• Title/Summary/Keyword: Quasi-3D stability analysis

Search Result 14, Processing Time 0.021 seconds

Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method

  • Zhang, Biao;Ma, Zongyu;Wang, Xuan;Zhang, Jiasheng;Peng, Wenqing
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.43-54
    • /
    • 2020
  • The limit analysis and response surfaces method were combined to investigate the reliability of pressurized tunnel faces subjected to seismic force. The quasi-static method was utilized to introduce seismic force into the tunnel face. A 3D horn failure mechanism of pressurized tunnel faces subjected to seismic force was constructed. The collapse pressure of pressurized tunnel faces was solved by the kinematical approach. The limit state equation of pressurized tunnel faces was obtained according to the collapse pressure and support pressure. And then a reliability model of pressurized tunnel faces was established. The feasibility and superiority of the response surfaces method was verified by comparing with the Monte Carlo method. The influence of the mean of soil parameters and support pressure, variation coefficients, distribution type and correlation of c-φ on the reliability of pressurized tunnel faces was discussed. The reasonable safety factor and support pressure required by pressurized tunnel faces to satisfy 3 safety levels were presented. In addition, the effects of horizontal seismic force, vertical seismic force and correlation of kh-kv on the reliability of pressurized tunnel faces were also performed. The method of this work can give a new idea for anti-seismic design of pressurized tunnel faces.

Investigation of Dynamic Characteristics of the Flooding Water of the Damaged Compartment of an ITTC RoRo-Passenger (ITTC RoRo-Passenger 손상부위 침수유동 특성에 관한 연구)

  • Cho Seok-Kyu;Hong Sa-Young;Kim Yoon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.451-459
    • /
    • 2006
  • When a ship is damaged and flooded, the motion of the damaged ship is significantly influenced by the flooding water dynamics. The flooding water in the damaged ship has been treated as a lumped mass under the quasi-static assumption in most of previous researches. To calculate the motion of damaged ship rigorously, it is necessary to analyze the coupled dynamics of flooding water. In this study, a series of numerical and experimental studies is conducted for the damaged part of ITTC RORO passenger. FLOW3D is used for investigating the feasibility of the state of the art CFD technique. An applicability of the coupled motion analysis of damaged ships can be confirmed by agreement between the numerical results and the model experiments. A CFD technique is considered for the numerical modeling of the dynamics of flooding water.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

The Analysis of Investment Determinants in Angel Investors: Focus on the Financial Characteristics (엔젤투자자의 투자의사 결정요인 분석: 재무적 특성을 중심으로)

  • Sang Chang Lee;Byungkwon Lim;Chun-Kyu Kim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.147-157
    • /
    • 2023
  • This paper investigates the financial factors affecting angel investors' investment decisions for 818 firms from 2009 to 2018 in the Korean venture investment market. We construct a quasi-experimental design using propensity scoring matching and compare the investment determinants between investment firms and matching firms. The main empirical findings are as follows. First, we find that angel investors are more likely to choose firms based on a firm's growth such as profit and assets rather than profitability or financial stability. In addition, we identify that they prefer the firm not only higher intangible assets but also higher R&D expenditures. Second, we find that angel investors consider both growth and activity ratios in the firms for over three years and have entered the mid-stage of startups. Overall, we confirm that the investment decision of angel investors mainly focuses on the venture startups' growth trend or future growth potential rather than the realized profitability or financial stability. We also infer that the possibility of performance creation is an important investment factor along with growth for the mid-stage startup.

  • PDF