• Title/Summary/Keyword: Quasi-3D solution

Search Result 51, Processing Time 0.024 seconds

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud;Samir Benyoucef;Attia Bachiri;Rabbab Bachir Bouiadjra;Abdelouahed Tounsi;Mahmoud M Selim;Hosam A. Saad
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Galloping analysis of stranded electricity conductors in skew winds

  • Macdonald, J.H.G.;Griffiths, P.J.;Curry, B.P.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.303-321
    • /
    • 2008
  • When first commissioned, the 1.6 km span 275kV Severn Crossing Conductor experienced large amplitude vibrations in certain wind conditions, but without ice or rain, leading to flashover between the conductor phases. Wind tunnel tests undertaken at the time identified a major factor was the lift generated in the critical Reynolds number range in skew winds. Despite this insight, and although a practical solution was found by wrapping the cable to change the aerodynamic profile, there remained some uncertainty as to the detailed excitation mechanism. Recent work to address the problem of dry inclined cable galloping on cable-stayed bridges has led to a generalised quasi-steady galloping formulation, including effects of the 3D geometry and changes in the static force coefficients in the critical Reynolds number range. This generalised formulation has been applied to the case of the Severn Crossing Conductor, using data of the static drag and lift coefficients on a section of the stranded cable, from the original wind tunnel tests. Time history analysis has then been used to calculate the amplitudes of steady state vibrations for comparison with the full scale observations. Good agreement has been obtained between the analysis and the site observations, giving increased confidence in the applicability of the generalised galloping formulation and providing insight into the mechanism of galloping of yawed and stranded cables. Application to other cable geometries is also discussed.

An Improved PFC & Low Noise Power Supply using Quasi-Resonant Mode Hybrid IC of STR-G9600 (의사공진형 Hybrid IC STR-G9600을 이용한 저 노이즈 역률 개선형 전원 장치)

  • Lee Myung Jun;Ahn Jun Young;Shin Ho Jun;Bae Jun Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.233-236
    • /
    • 2002
  • The solution for PFC(Power Factor Correction), as a regulation in energy Policy, is becoming a hot Issue in every country because of the shortage of electrical energy. Therefore, a new improved idea for PFC problem has been introduced in this study. A lot of merits, effective cost by simple circuit, reduced PCB size, lighter than reactor in the view of weight, lower level of screen noise by leakage inductance in CTV applications, have been stated by comparing to the earlier method of using a Reactor. All test results in this statement were done by using a power device of STR-G9600 series based on the real load condition of color television. furthermore, the study shows that the test results also meets the IEC-1000-3-2 class D, which regulates the PFC when input power of a set is more than 75watts. More improved PFC in other applications hopes to be implemented by using the proposed method.

  • PDF

Opto-electrical properties of solution based carbon nanotube electrode (용액코팅된 탄소나노튜브 전극의 광전기적 성질)

  • Woo, Jong-Seok;Kim, Sun-Young;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.394-394
    • /
    • 2007
  • Transparent conductive films can serve as a critical component in displays, solar cells, lasers, optical communication devices, and solid state lighting. Carbon nanotube (CNT) based transparent conductive films are fabricated on glass and polymer substrates. CNTs typically exist in form of quasi-crystalline bundles or highly entangled bundles containing tens of individual nanotubes. To achieve full potential, CNTs must be dispersed in a solvent or other organic media. CNTs are acid treated with nitric acid then the stable dispersion of CNTs in polar solvent such as alcohols, DMF, etc. is achieved by sonication. The solubility of CNTs correlates well with the area ratio of the D and G bands from Raman spectrum. Thin films are formed from well dispersed CNT solutions using spray coating method. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders.

  • PDF

Fabrication of a periodically poled MgO : $LiNbO_3$ ridge waveguide for a green laser generation (녹색 광 발진을 위한 주기적 분극 반전된 MgO : $LiNbO_3$ ridge waveguide 제작)

  • Yang, W.S.;Kwon, S.W.;Song, M.K.;Lee, H.M.;Kim, W.K.;Koo, K.H.;Yoon, D.H.;Lee, H.Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.151-155
    • /
    • 2007
  • Quasi-phase-matched (QPM) second harmonic generation (SHG) waveguide devices for a green light generation were fabricated by a periodically patterned electrode on the +Z crystal surface and homogeneous LiCl solution using a 5 mol% MgO doped congruent z-cut lithium niobate crystals. Using selective chemical etching, we confirmed the periodic (${\sim}6.8{\mu}m$) domain inverted structure and measured SHG properties of fabricated periodically poled MgO : $LiNbO_3$ ridge-type waveguides.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.