• Title/Summary/Keyword: Quasi Static Test

Search Result 333, Processing Time 0.031 seconds

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Effects of a Recreational Combination Gymnastics Program for Old-old Women (레크리에이션병합 체조프로그램이 후기 여성노인의 체력, 우울, 인지기능 및 삶의 질에 미치는 효과)

  • Choi, Yeon Hee;Lee, Choon Ji
    • Journal of Korean Academy of Nursing
    • /
    • v.42 no.6
    • /
    • pp.843-852
    • /
    • 2012
  • Purpose: In this study a recreational combination gymnastics program was provided for women 75 years of age or older and the effects on physical fitness (grip strength, static balance, ability to do complex movement), depression, cognitive function and quality of life were examined. Methods: A quasi-experimental study employing a nonequivalent control group, pre-post design was conducted. Participants included 53 women elders whose cognitive function was within the normal range. The women were assigned to an experimental group (27) or a control group (26). The intervention was conducted twice a week for a period of 12 weeks. Chi-square test, t-test, paired t-test, Wilcoxon rank sum test and Wilcoxon signed rank test were used for data analysis. Results: Following completion of the program, left grip strength (t=2.17, p=.035), right grip strength (t=2.04, p=.046), static balance (t=-2.18, p=.030), depression (z=-2.88, p=.004), cognitive function (t=3.96, p<.001), and quality of life (t=-3.19, p=.002) were significantly better in the experimental group. Conclusion: Findings from this study indicate that recreational combination gymnastics programs are effective in enhancing physical fitness, cognitive function, and quality of life and in decreasing depression for female elders and could therefore be regarded as positive programs for promotion of physical and mental health for older women.

Pseudo-Dynamic Test for Seismic Performance Evaluation of RC Bridge Piers (실물 철근콘크리트 교각의 유사동적 실험에 의한 내진성능 평가)

  • 박창규;박진영;정영수;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.250-257
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach Pseudo dynamic tests of six full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, five test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Limited Ductile Capacity of Reinforced Concrete Bridge Pier with Longitudinal Steel Lap-splicing by Pseudo Dynamic Test (유사동적 실험에 의한 철근콘크리트 교각의 주철근 겹이음에 따른 한정연성능력)

  • 박창규;박진영;조대연;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.885-890
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach. Pseudo dynamic tests of four full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, three test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Dynamic Material Test of Sinter-Forged Cu-Cr Alloy and Application to the Impact Characteristics of Vacuum Interrupter (구리-크롬 합금의 조성비에 따른 동적실험 및 진공 인터럽터 충격특성에의 적용)

  • Song, Jung-Han;Lim, Ji-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.447-452
    • /
    • 2004
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is obtained from the split Hopkinson pressure bar test. Experimental results from both quasi-static and dynamic compressive tests are interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the amount of chromium content.

  • PDF

The Effects of an Exercise Program using a Resident Volunteer as a Lay Health Leader for Elders' Physical Fitness, Cognitive Function, Depression, and Quality of Life (지역 주민 건강리더를 활용한 자조운동 프로그램이 노인의 체력, 인지기능, 우울 및 삶의 질에 미치는 효과)

  • Choi, Yeon-Hee;Kim, Na-Young
    • Research in Community and Public Health Nursing
    • /
    • v.24 no.3
    • /
    • pp.346-357
    • /
    • 2013
  • Purpose: This study was conducted to examine an exercise program using a lay health leader for elderly participants. The test covered physical fitness (grip strength, static balance and complex movement abilities), depression, cognitive function and quality of life. Methods: A quasi- experimental study using a non-equivalent control group pre-post design was employed. The participants were 62 elders from an institution for the aged, of whom 30 were included in the experimental group and 32 in the control group. The exercise program using a resident volunteer as a lay health leader was run three times a week for 12 weeks. The collected data were analyzed by $x^2$ test, t-test, paired t-test, and ANCOVA with SPSS/WIN 19.0. Results: After the program, left grip strength (F=1.77, p<.001), right grip strength (F=9.97, p<.001), static balance (F=2.79, p<.001), ability to move complex (F=1.76, p<.001), depression (F=7.66, p<.001), the cognitive function (F=8.39, p<.001) and quality of life (F= 1.08, p<.001) in the experimental group were significantly better than those in the control group. Conclusion: Study findings indicated that using a resident volunteer as a lay health leader was effective. It can be recommended as a public health resource and for consistent and comfortable education for the elderly in communities.

The Evaluation of Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능 평가)

  • 정지만;장승필;인성빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A recent development, a concrete-filled steel(CFS) pier is an alternative to a reinforced concrete bridge pier in an urban area, because of its fast construction and excellent ductility against earthquakes. The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

Seismic Performance Analysis of RC Piers with Lap-spliced Reinforced Steel and Differentiated Aspect Ratios (주철근 겹침이음 및 형상비에 따른 철근콘크리트 교각의 내진거동 분석)

  • Cho, Chang-Beck;Shin, Ho-Jin;Kwahk, Im-Jong;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.41-53
    • /
    • 2012
  • The objective of this study is to evaluate the seismic capacity of RC piers with small aspect ratios. Test specimens were selected from the prototype piers among existing national roadway bridges which are expected to fail in shear and/or complex shear-flexural mode. Two groups of full scale RC pier models were constructed with aspect ratios of 2.25 and 2.67. Quasi-static tests have been implemented to investigate the failure behavior of the RC piers in terms of the lap-spliced longitudinal reinforcing steel and the aspect ratio. It is confirmed that regarding its shear-flexural behavior, the pier is very sensitive to the aspect ratio or details. In the case of a test pier with highly lap-spliced longitudinal bars, the bond failure of lap-splice steels was the dominant cause of failure before the occurrence of flexure or shear-flexural failure, despite a slight change in the aspect ratio. Finally, based on the test results and analysis, this paper proposes formulas for the yielding and ultimate displacements of circular reinforced concrete bridge piers without seismic details. These formulas will be useful for the investigation and upgrade of the seismic capacity of bridge piers without seismic details.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.