• Title/Summary/Keyword: Quasi Static Test

Search Result 333, Processing Time 0.031 seconds

Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test (반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정)

  • Yang, Seung-Han;Kim, Ki-Hoon;Park, YongKuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

An Experimental and FEA on Crashworthiness of Rolling Stock (철도차량의 Crashworthiness에 관한 실험 및 해석적 연구)

  • Park, Kyoung-Huan;Lee, Jung-Su;Lee, Jang-Uk;Park, Geun-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2040-2045
    • /
    • 2008
  • The priority of Crashworthiness concept for rolling stock is progressively increasing to reduce the damage of drivers and passengers as well as the car. For the first step of this research, the analysis of the crash elements have been performed. Also the longitudinal collapse force and mode is important point for whole carbody structure to guarantee the lower force at end part rather than the main passenger area. The carbody quasi-static collapse analysis and real test has been performed in the research. The crash elements FEA and test has been performed as well. After the initial Analysis and test, the correlation analysis between the FEA and test has been performed by FEA tunning. All this result will be used for real crashworthiness design for carbody structure.

  • PDF

Experimental Study on Seismic Performance Evaluation of Piers in Seohae Grand Bridge (세해대교 PSM교 교각의 내진성능 평가에 관한 실험적 연구)

  • 손혁수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.319-326
    • /
    • 2000
  • The purpose of this study is to evaluate seismic performance of reinforced concrete pier columns in Seohae Ground Bridge. Since the bridge was designed before preparing the seismic design specification the bridge columns of hollow hexagonal section were designed and constructed with insufficient seismic reinforcement details such as longitudinal and transverse reinforcement lap-splices. In order to take the necessary measures to improve its seismic performance experimental study was performed by small-scale test for the bridge columns, From the quasi-static test for small-scale column specimens the lap-splices were not critical for overall behavior of the column if sufficient lap-splice-length was provided. The test results of failure mode effective stiffness ductility and equivalent viscous damping ratio are presented.

  • PDF

Ductility and Seismic Performance of Spirally Reinforced Bridge Columns (나선철근 원형교각의 연성 및 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers (준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가)

  • 이대형;이재형;정영수;박진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

Tensile Characteristics and Behavior of Blood Vessels from Human Brain in Uniaxial Tensile Test

  • Suh, Chang-Min;Kim, Sung-Ho;Ken L. Monson;Werner Goldsmith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1016-1025
    • /
    • 2003
  • The rupture of blood vessels in the human brain results in serious pathological and medical problems. In particular, brain hemorrhage and hematomas resulting from impact to the head are a major cause of death. As such, investigating the tensile behavior and rupture of blood vessels in the brain is very important from a medical point of view. In the present study, the tensile characteristics of the blood vessels in the human brain were analyzed using a quasi-static uniaxial tensile test, and the properties of the arteries and veins compared. In addition, to compare the tensile behavior and demonstrate the validity of the experimental results, blood vessels from the legs of pigs were also tested and analyzed. The overall results were in accordance with the histological structures and previous medical reports.

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Evaluation of Damage Index for Reinforced Concrete Column according to Lap-splice, Number of Cycle, Axial Load and Confinement steel Ratio (철근콘크리트 교각의 겹침이음, 하중재하 횟수, 축하중비 및 구속철근비에 따른 손상도 평가)

  • 이대형;정영수;박창규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.271-279
    • /
    • 2003
  • The objective of this study is to evaluate the damage of the reinforced concrete bridge piers. For the purpose of this research, twelve reinforced concrete specimens were fabricated and experimented with quasi-static test method. The selected test parameters are lap splice, axial load ratio, confinement steel ratio and number of loading cycle. The method of evaluate of damage index is the model proposed by Park and Ang. In accordance with this research, the most effective test parameter is lap splice of longitudinal steel. Therefore, the retrofit scheme of reinforced concrete bridge piers with lap splice of longitudinal steel, which was constructed before 1992, must be settled without delay. Otherwise, the effect of axial force is trivial. The more confinement steel is less damage index and more loading cycle lead to raise damage. The damage statement proposed Park and Ang is the same with experimental results.

  • PDF

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF