• Title/Summary/Keyword: Quasi 3-dimensional Analysis

Search Result 99, Processing Time 0.027 seconds

Calculation of 3-Dimensional Flow Through an Impeller of Centrifugal Compressor (원심압축기 회전차 내부의 3차원 유동해석)

  • ;;Kang, S. H.;Jeon, S. G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2617-2629
    • /
    • 1995
  • The flow through a centrifugal compressor rotor was calculated using the quasi-3-dimensional and fully 3-dimensional Navier-Stokes solution methods. The calculated results, obtained during the development of the computer codes for both methods are discussed. In the inviscid quasi 3-dimensional analysis, stream function formulation was used for the blade to blade (B-B) plane calculations, and the streamline curvature method was used for the meridional (H-S) plane calculations. In the viscous 3-dimensional flow analysis, a control volume method based on a general rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. The quasi-3-dimensional analysis reasonably predicts the pressure distributions and requires much less computation time in the region where viscous effects are not strong; however, it fails to predict velocity field and loss mechanism through the impeller passage. The viscous 3-dimensional flow analysis shows reasonable pressure distributions and typical jet-wake flow field through the impeller passage. Secondary flow and total pressure distributions on cross-sectional planes explain the loss mechanisms through the impeller.

Effective Boundary Conditions for FEM Analysis of Composite Laminates (복합재료 적층판의 유한요소 해석을 위한 효율적 경계조건)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.92-98
    • /
    • 1998
  • This paper presents three boundary techniques which are useful for FEM analysis of composite laminates: 1) a rotational symmetric boundary technique . 2) a quasi three-dimensional boundary technique and 3) a contact boundary technique. The use of the rotational symmetric boundary technique is possible for a smaller FEM model. With the use of the quasi three-dimensional boundary tecnique. quasi three dimensional analysis of composite laminates can be performed on the conventional 3-D FEM program These techniques can readily be adopted to FEM programs.

  • PDF

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

The Derivation of Generalized Quasi-Three Dimensional Displacement Field Equations for the Analysis of Composite Laminates (복합재료 적층판의 해석을 위한 일반화 준 3차원 변위식의 도출)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.21-27
    • /
    • 1998
  • In the case of existing in free-edge delaminations of composite laminates which are symmetry with respect to mid-plane in laminates also, in the case of asymmetry and anti-symmetry, the generalized quasi-three dimensional displacement field equations developed from quasi-three dimensional displacement field equations can be applied to solve above cases. We introduce three paramenters in this paper, which have not been used in quasi-three dimensional displacement field equations until now. To the laminate subjected to the axial extension strain $\varepsilon$0(C1) in $\chi$-direction, the bending deformation $\chi$$\chi$(C$_2$) around у-direction, the bending deformation w$\chi$(C$_4$) around z-direction and the twisting deformation $\chi$$\chi$y(C$_3$) around $\chi$-direction .The generalized quasi-three dimensional displacement field equations are able to be analyzed efectively.

Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow (H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석)

  • 오종식;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.

Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis (준 3차원 유동해석을 통한 증기 터빈의 회전익 설계)

  • Cho, S.H.;Kim, Y.S.;Kwon, G.B.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

Development of Axial Compressor Design and Performance/Flow Analysis Program (축류 압축기 설계 및 성능/유동 해석 프로그램 개발)

  • Yoon, S.H.;Lee, K.Y.;Park, J.Y.;Park, T.J.;Choi, M.S.;Baek, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.658-663
    • /
    • 2001
  • In this study, the axial-compressor design and performance/flow analysis program is developed. A mean-line analysis was used to determine optimum arrangement of overall geometry and its off-design performance is predicted by stage-stacking method. Three dimensional blade shape is generated using radial equilibrium equation and vortex methods. Various blade shape is generated and their performance is compared. Finally the quasi-three dimensional flow analysis is applied to investigate the detailed flow phenomena.

  • PDF

Signal Design of grouping Quasi-Orthogonal Space Time Block Codes on the Multi-dimensional Signal Space (다차원 신호 공간에서 그룹 준직교 시공간 블록 부호의 신호 설계)

  • Yeo, Seung-Jun;Heo, Seo-Weon;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper proposes the signal design techniques of quasi-orthogonal space time block codes (QO-STBCS) on the multi-dimensional signal space. In the multiple antenna system(MIMO), QO-STBC achieves the full-diversity and full-rate by grouping two based-symbols. We study the condition for the full-diversity of the grouping QO-STBC geometrically and the performance analysis of codes on the multi-dimensional signal space regarding the various signal constellations. Simulation results show that the way of the performance analysis is validity.

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF