• Title/Summary/Keyword: Quartz fiber

Search Result 64, Processing Time 0.024 seconds

Aqueous Glucose Solution Measurement by Three Types NIR Spectrometer (세 가지 방식의 근적외선 분광분석기를 이용한 글루코오스 수용액의 측정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.461-468
    • /
    • 2003
  • A method is described for measuring clinically relevant levels of glucose in a pH 7.4 phosphate buffer by nearinfrared (NIR) absorption spectroscopy. Three types of NIR spectrometer, dispersive type, photo-diode array (PDA) type, and fourier transform (FT) type spectrometer were used and the performance was compared. Spectra were collected with a cuvette cell or quartz liquid fiber of 1 mm or 2 mm optical pathlength as transmittance method. Glucose absorption band appeared at second overtone, first overtone, and combination region for all systems. By use of the multivariate technigue of partial least squares (PLS) regression, glucose concentrations can be determined with a 16, 44, and 9.1 mg/d l standard error of prediction for dispersive type, photo-diode array type, and fourier transform type system, respectively. Sensitivity of spectrometer was evaluated by absorbance for the difference of 10 mg/d l glucose. Three absorption bands, second overtone, first overtone, and combination region were suited to three types systems, dispersive type, photo-diode array type, and fourier transform type systems, respectively. This investigation showed that three types NIR spectrometer were proper method for identification and quantitative analysis of glucose and possible for noninvasive blood glucose monitoring.

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Effect of Ambient Temperature on the Distribution of Atmospheric Concentrations of Polycyclic Aromatic Hydrocarbons in the Vapor and Particulate Phases (대기 중 다환방향족탄화수소의 기체-입자상 농도분포에 미치는 주변 온도의 영향)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.117-132
    • /
    • 1998
  • The main purposes of this study are to investigate the distributional characteristics of polycyclic aromatic hydrocarbons (PAH) in the vapor and particulate phases in the ambient atmosphere, and to evaluate the effect of ambient temperature on the vapor-particle partitioning during the sampling period. A total of 64 samples were collected during a period of 1995 to 1996, using a medium-volume sampler with XAD-2 adsorbents and quartz fiber filters. Analyses of PAH were carried out using HPLC with UV and Fluorescence detections. In this study, a significant seasonal variation in the distributions was observed, reflecting the effect of ambient temperature on the vapor-particle partitioning of PAH. The relationship between the vapor-particle distributions of the 3 to 5 rings PAH and ambient temperature is considered to be well described using the Langmuir adsorption concept. The estimated empirical constants for each PAH in the relationship, particularly for the more volatile compounds, were also comparable with results from other studies. However, it is still difficult to accurately estimate the initial vapor-particle distribution of PAH in the ambient air, since it is not known to what extent the trapped vapours originated from the particles laden in the filter by being volatilized or from the air samples initially present in the vapour phase. The distribution factors for volatile PAH with 3 to 4 rings appeared to be comparable with those in the literature. It should be noted, however, that these distribution factors give information only about the distribution of PAH between the two phases under a specific sampling condition, and hence may provide only semi -quantitative information on the vapor-particle distributions in the atmosphere.

  • PDF

Evaluation of a Method for the Measurement of PAHs in the Ambient Atmosphere - Focusing on High Volume Sampling and GC/MS Analysis (대기 중 다환방향족탄화수소 측정방법의 성능평가 - 하이볼륨 샘플링 및 GC/MS 분석방법을 대상으로)

  • Seo, Young-Kyo;Park, Dae-Kwon;Baek, Sung-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.322-333
    • /
    • 2009
  • In this study, a measurement method was evaluated for the determination of polycyclic aromatic hydrocarbons (PAHs) in the ambient atmosphere. PAHs were sampled by high-volume samplers, and were then analysed with a GC/MS system. Particulate PAHs were collected on $8"{\times}10"$ quartz fiber filter, while vapor phase PAHs were adsorbed on polyurethane foam (PUF). Target compounds included a total of 36 PAHs, which are known to be frequently detected in the urban atmosphere. It was not necessary to clean-up samples before samples were analyzed using GC/MS, and the overall performance of the method was tested by a variety of quality control and quality assurance schemes. It is generally known that the clean-up procedure can negatively affect the recovery of samples. Precision and accuracy was evaluated using SRM provided by US NIST, and the results were generally satisfactory and reliable. However, the GC/MS method appeared not to be adequate for 6-rings PAHs, such as coronene, due to its lower sensitivity. In addition, collection efficiencies for low molecular compounds, such as 2-rings PAHs, were poor because of the lower retention volume of the PUF adsorbent. As a result, it was concluded that the method based on high-volume sampling and GC/MS analysis can give very reliable data by simultaneous sampling of both particulate and vapor phases for 3-rings to 5-rings PAHs of environmental concern.

A Preliminary Statistical Stduy of Polycyclic Aromatic Hydrocarbons and Inorganic Elements Data for Extimation Ambient PM-10 Sources -Near the Huge Young-Tong Construction Area during Feb. 1996 to June 1996- (대기 중 PM-10의 오염원 추정을 위한 다환방향족탄화수소와 무기원소자료의 예비통계분석 -1996년 2월~6월까지 대규모 영통건설지역 주변을 중심으로-)

  • 손정화;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.11-22
    • /
    • 2000
  • Polycyclic aromatic hydrocarbons(PAHs) have known as potentially hazardous air pollutants(HAPs0 to human health because of its carcinogenic and mutagenic behaviors. The purpose of this study was to determine the level of 6 PAHs(Fluoranthene, Pyrene, Benzo[a]anthracene, Chrysene, Benzo[b]fluoranthene, and Benzo[a]pyrene) as well as 10 inorganic elements(Cr, Na, K, Zn, Pb, Fe, Cu, Ti, Al and Cd) in the ambient PM-10. The total of 115 samples had been collected from February, 1996 to June, 1996 on quartz fiber by a PM-10 high volume air sampler near the Yong-Tong Apartment complexes. A statistical analysis was performed for the PAHs and inorganic elements data set using a principal component analysis in order to identify qualitatively the potential sources of PM-10. A total of 6 principal components were separated by intensive data pretrement and transformation processes, such as soil, refuse incineration, oil burning, coal burning, field burning, vehicle emission sources. The results showed that PAHs were associated with various burning activities like refuse and field burning, coal burning, and oil burning emissions in the study area. These derived sources were well matched with the previously known source profiles in terms of compositonal order and level of measured species. The combination data set consisted of both organic and inorganic species might provide more powerful source signature and might increase the number of potentially derived sources than PAHs or inorganic data alone.

  • PDF

Studies on Particle Size Distribution of Heavy Metals in the Atmosphere (大氣中 重金屬의 粒經分布에 關한 硏究)

  • Sohn, Dong-Hun;Kang, Choon-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.57-63
    • /
    • 1986
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to May 1986 according to particle size using Andersen high-volume air sampler, and 6 heavy metals (Fe, Mn, Cu, Ni, Zn, Pb) in these particulates were analyzed by atomic absorption spectrophotometry. The arithmetic mean concentration of A.P.M. was 195.57$\mug/m^3$. The arithmetic mean concentrations of 6 metals (Fe, Mn, Cu, Ni, Zn and Pb) were 3385.04, 1451.67, 897.94, 159.68, 127.14 and 59.49 $ng/m^3$ respectively. The order of heavy metals contributing to A.P.M. was as follows: Fe > Zn > Pb > Cu > Mn > Ni. These heavy metals were devided into 3 groups according to their particle size distribution. The contents of heavy metals belonging to the 1st group (Fe, Mn) were increased with the particle size. On the contrary, the content of Pb belonging to the 2nd group (Pb) was increased with the decrease in the particle size. The heavy metal contents in the 3rd group (Ni, Cu, Zn) were lowest in the particle size range of 2.0-3.3 $\mum$ compared with particles larger or smaller tha this range. The seasonal variation of heavy metal concentration were as follows: Fe and Mn contents were highest in spring, but Ni and Pb contents were highest in winter. Statistical analysis showed that there was a significant correlation between A.P.M. and Fe in coarse particles, meanwhile between A.P.M. and Pb in the case of fine particles.

  • PDF

Inter-comparison of Two Aethalometers for Aerosol Black Carbon Measurements (대기 에어로졸 검댕입자 측정을 위한 두 aethalometer의 상호비교)

  • Jung, Jung-Hoon;Park, Seung-Shik;Yoon, Kwan-Hoon;Cho, Sung-Yong;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • Recently, a real-time, pocket-sized aethalometer (microAeth$^{(R)}$ model AE51) has been developed by Magee Scientific Inc. for measuring the concentration of black carbon in the atmosphere. In this study, two aethalometers, models AE-16 and AE-51, which measure the optical absorption of carbon particles at infrared 880 nm, were operated at time interval of 5-min between January 9 and February 10, 2010 at an urban site of Gwangju, to compare the accuracy of black carbon (BC) concentrations reported from the AE-51 model and to investigate reasonable sampling time of filter media in the AE-51. The air samples in the AE-51 and AE-16 models are collected on T60 (Teflon coated glass fiber) filter media (filter spot area: 0.07 $cm^2$) and quartz fiber roll-tape filter (filter spot area: 1.67 $cm^2$), respectively. Real-time measurement results indicate that when the filters were clean, the AE-51 BC was greater than or similar to the AE-16 BC data. However as the filter spots become darker, the AE-16 BC concentrations were higher than the AE-51 BC data and the difference in the BC concentrations from two AE models becomes gradually increased. Relative error in the AE-51 and AE-16 BC concentrations showed significance difference depending on used time of the filter in the AE-51 model, weather pattern, levels of air pollution, etc, ranging from 11.5% (used time of the filter in AE-51: 1,595 min) to 52.5% (used time of the filter in AE-51: 2,085 min). When considering the used time of one filter ticket in the AE-51 model and difference (or relative error %) between AE-16 and AE-51 BC concentrations, it is recommended that the standard sampling time per one filter ticket within the AE-51 model be less than approximately 24 hr (1,440 min) under the normal weather conditions except for severe haze and mist events.

Reliability and Accuracy of the Deployable Particulate Impact Sampler for Application to Spatial PM2.5 Sampling in Seoul, Korea (서울시 PM2.5 공간 샘플링을 위한 Deployable Particulate Impact Sampler의 성능 검증 연구)

  • Oh, Gyu-Lim;Heo, Jong-Bae;Yi, Seung-Muk;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.277-288
    • /
    • 2017
  • Previous studies of health effects of $PM_{2.5}$ performed spatial monitoring campaigns to assess spatial variability of $PM_{2.5}$ across people's residences. Highly reliable portable and cost-effective samplers will be useful for such campaigns. This study aimed to investigate applicability of the Deployable Particulate Impact Sampler(DPIS), one of the compact impact samplers, to spatial monitoring campaigns of $PM_{2.5}$ in Seoul, Korea. The investigation focused on the consistency of $PM_{2.5}$ concentrations measured by DPISs compared to those by the Low-volume Cyclone sampler (LCS). LCS has operated at a fixed site in the Seoul National University Yeongeon campus, Seoul, Korea since 2003 and provided qualified $PM_{2.5}$ data. $PM_{2.5}$ sampling of DPISs was carried out at the same site from November 17, 2015 through February 3, 2016. $PM_{2.5}$ concentrations were quantified by the gravimetric method. Using a duplicated DPIS, we confirmed the reliability of DPIS by computing relative precision and mean square error-based R squared value ($R^2$). Relative precision was one minus the difference of measurements between two samplers relative to the sum. For accuracy, we compared $PM_{2.5}$ concentrations from four DPISs (DPIS_Tg, DPIS_To, DPIS_Qg, and DPIS_Qo) to those of LCS. Four samplers included two types of collection filters(Teflon, T; quartz, Q) and impaction discs(glass fiber filter, g; pre-oiled porous plastic disc, o). We assessed accuracy using accuracy value which is one minus the difference between DPIS and LCS $PM_{2.5}$ relative to LCS $PM_{2.5}$ in addition to $R^2$. DPIS showed high reliability (average precision=97.28%, $R^2=0.98$). Accuracy was generally high for all DPISs (average accuracy=83.78~88.88%, $R^2=0.89{\sim}0.93$) except for DPIS_Qg (77.35~78.35%, 0.82~0.84). Our results of high accuracy of DPIS compared to LCS suggested that DPIS will help the assessment of people's individual exposure to $PM_{2.5}$ in extensive spatial monitoring campaigns.

A Study on the Concentration Distribution of Airborne Heavy Metals in Major Industrial Complexes in Korea (국내 주요 산업단지 대기 중 중금속농도 분포에 관한 연구)

  • Kang, Byung-Wook;Kim, Min-Ji;Baek, Kyung-Min;Seo, Young-Kyo;Lee, Hak Sung;Kim, Jong-Ho;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.269-280
    • /
    • 2018
  • This paper reports the results of field evaluation to determine the levels of heavy metals in major industrial complexes in Korea over a seven year period (2007~2013). The measurement of heavy metal was conducted using quartz fiber filter sampling and ICP-AES analysis. In order to validate the analytical performance of these methods, studies were also carried out to investigate data quality control(QC) parameters, such as the method detection limit (MDL), repeatability, and recovery efficiencies. The average concentrations of total suspended particulates (TSP) for the nine industrial complexes in Korea were $104{\sim}169{\mu}g/m^3$, which was higher than other industrial complexes and urban areas. The Sihwa and Banwol industrial complexes were shown to be the biggest contributing sources to high TSP emission ($159{\mu}g/m^3$ and $169{\mu}g/m^3$, respectively). The concentrations of heavy metals in TSP were higher in the order of Fe>Cu>Zn, Pb, Mn>Cr, Ni, As and Cd. It was observed that Fe was the highest in the Gwangyang and Pohang steel industrial complexes. The concentrations of Zn and Pb were high in Onsan, Sihwa and Banwol industrial complexes, and this was attributed to the emission from the nonferrous industry. Additionally, Cr and Ni concentrations were high in the Sihwa and Banwol industrial complexes due to plating industry. On the other hand, Ulsan and Onsan industrial complexes showed high Cr and Ni concentrations as a response to the emission of metal industry related to automobile. The correlation analysis revealed the high correlation between Cr and Ni in plating industry from Sihwa and Banwol industrial complexes. Adding to this, components related to coal combustion and road dust showed high correlation in Pohang and Gwangyang industrial complexes. Then Onsan and Ulsan industrial complexes showed high correlation among components related to the nonferrous metals.

Estimation of PM10 Source Contributions on Three Cities in the Metropolitan Area by Using PMF Model (PMF 모델을 이용한 수도권 내 3개 도시에서의 PM10 오염원의 기여도 추정)

  • Lee, Tae-Jung;Huh, Jong-Bae;Yi, Seung-Muk;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.275-288
    • /
    • 2009
  • The Korean government strengthened the environmental polices to manage and enhance Metropolitan Area air quality, and also has enforced "Special Act on Seoul Metropolitan Air Quality Improvement (SASMAQI)" issued in Dec. 2004. Recently government expanded the Seoul Metropolitan Air Quality Management District (SMAQMD) to the outskirts satellite cities of Seoul area through the "Revised Law Draft of SASMAQI". The SMAQMD has been alloted the allowable emission loads to the local governments on the basis of the carrying $PM_{10}$ capacity. However, in order to establish the effective air quality control strategy for $PM_{10}$, it is necessary to understand the corresponding sources which have a potential to directly impact ambient $PM_{10}$ concentration. To deal with the situations, many receptor methodologies have been developed to identify the origins of pollutants and to determine the contributions of sources of interests. The objective of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions at the metropolitan area. $PM_{10}$ samples were simultaneously collected at the 3 semi-industrialized local cities in the Seoul metropolitan area such as Hwasung-si, Paju-si, and Icheon-si sites from April 15 to May 31, 2007. The samples collected on the teflon membrane filter by one $PM_{10}$ cyclone sampler were analyzed for trace metals and soluble ions and samples on the quartz fiber filter by another sampler were analyzed for OC and EC. Source apportionment study was then performed by using a positive matrix factorization (PMF) receptor model. A total of 6 sources were identified and their contributions were estimated in each monitoring site. Contribution results on Hwasung, Paju, and Icheon sites were as follows: 33%, 27%, and 27% from soil source, 26%, 26%, and 21% from secondary aerosol source, 11%, 11%, and 12% from biomass burning, 12%, 6%, and 5% from sea salt, 7%, 15%, and 19% from industrial related source, and finally 11%, 15%, and 16% from mobile and oil complex source, respectively. This study provides information on the major sources affecting air quality in the receptor sites and thus it will help to manage the ambient air quality in the metropolitan area by establishing reasonable control strategies, especially for the anthropogenic emission sources.