• Title/Summary/Keyword: Quartz Porphyry

Search Result 91, Processing Time 0.025 seconds

Skarn-Ore Associations and Phase Equilibria in the Yeonhwa-Keodo Mines, Korea (태백산광화대(太白山鑛化帶) 연화(蓮花)-거도광산(巨道鑛山)에 있어서의 스카른과 광석광물(鑛石鑛物)의 수반관계(隨伴關係) 및 상평형(相平衡))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • The Yeonhwa (I, II) and Keodo mines, neighboring in the middle part of the Taebaegsan mineral belt, contain three distinct classes of skarn deposits: the zinc-lead skarn at Yeonhwa (I, II), the iron skarn at Keodo south (Jangsan orebodies), and the copper skarn at Keodo north (78 orebodies). The present study characterizes the three classes of skarn deposits mainly in terms of skarn/ore associations examined from chemical compositional point of view, and applies existing quantitative phase diagrams to some pertinent mineral assemblages in these mines. At Yeonhwa I the Wolam I orebody shows a vertical variation in skarn minerals ranging from clinopyroxene/garnet zone on the lower levels through clinopyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite veins on the upper levels and surface. Ore minerals, sphalerite and galena, associate most closely with the intermediate clinopyroxene zone. At Keodo, the Jangsan iron skarn hosted in quartz monzodiolite as a typical endoskarn, shows a skarn zoning, from center of orebody to outer side, magnetite zone, magnetite/garnet zone, garnet clinopyroxene zone, and clinopyroxene/epidote/plagioclase zone. The 78 copper skarn in the Hwajeol limestone indicates a zoning, from quartz porphyry side toward limestone side, orthoclase/epidote zone, epidote/clinopyroxene zone, and clinopyroxene/garnet zone; chalcopyrite and other copper sulfides tend to be in clinopyroxene/garnet zone. Mioroprobe analyses of clinopyroxenes and garnets from the various skarn zones mentioned above revealed that the Yeonhwa zinc/lead skarns are characterized by johansenitic clinopyroxene (Hd 25-78, Jo 15-23) and manganoan andraditic garnet (Ad 13-97, Sp 1-24), whereas the Jangsan iron skarn at Keodo by Mn-poor diopsidic clinopyroxene (Di 78-93, Jo 0.2-1.0) and Mn-poor grossularitic grandite (Gr 65-77, Sp 0.5-1.0). The 78 copper skarn at Keodo is characterized by Mn-poor diopsidic-salite (Di 66-91, Jo 0.2-1.1) and Mn-poor andraditic grandite(Ad 40-74, Sp 0.5-1.1). The compositional charateristics of iron, copper, and zinc-lead skarns in the Yeonhwa-Keodo mines are in good correlations with those of the foreign counterparts. Compiling a $T-XCO_2$ phase diagram for the Jangsan endoskarns, a potential upper limit of temperature of the main stage of skarn formation is estimated to be about $530^{\circ}C$, and a lower limit to be $400^{\circ}C$ or below assuming $XCO_2=0.05$ at P total=1kb. Applying a published log $fS_2$-log $fo_2$ diagram to the Keodo 78 and Yeonhwa exoskarns, it is revealed that copper sulfides and zinc-lead sulfides do not co-exist stably below log $fS_2=-4$ and log $fO_2=-23$ at $T=400^{\circ}C$ and ${\times}CO=1$ atm.

  • PDF

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Thermal and Uplift Histories of the Jurassic Granite Batholith in Southern Jeonju: Fission-track Thermochronological Analyses (전주 남부지역 쥬라기 화강암질 저반체의 지열사와 융기사: 피션트랙 열연대학적 해석)

  • Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.389-410
    • /
    • 2016
  • Wide ranges of fission-track (FT) ages were obtained from the Jurassic granite batholith in Jeonju-Gimje-Jeongeup area, southwestern Okcheon Belt: sphene=158~70 Ma; zircon=127~71 Ma; apatite=72~46 Ma. Thermochronological analyses based on undisturbed primary cooling and reset or partially-reduced FT ages, and some track-length data reveal complicated thermal histories of the granite. The overall cooling of the batholith is characterized by a relatively rapid earlier-cooling (${\sim}20^{\circ}/Ma$) to $300^{\circ}C$ isotherm since its crystallization and a very slow later-cooling ($2.0{\sim}1.5^{\circ}/Ma$) through the $300^{\circ}C-200^{\circ}C-100^{\circ}C$ isotherms to the present surface temperature. It is indicated that the large part of Jurassic granitic body experienced different level of elevated temperatures at least above $170^{\circ}C$ (maximum>$330^{\circ}C$) by a series of igneous activities in late Cretaceous. Consistent FT zircon ages from duplicate measurements for two sites of later igneous bodies define their formation ages: e.g., quartz porphyry=$73{\pm}3Ma$; diorite=$73{\pm}2Ma$; rhyolite=$72{\pm}3Ma$; feldspar porphyry=$78{\pm}4Ma$ (total weighted average=$73{\pm}3Ma$). Intrusions of these later igneous bodies and pegmatitic dyke swarms might play important roles in later thermal rise over the study area including hot-spring districts (e.g., Hwasim, Jukrim, Mogyokri, Hoebong etc.). On the basis of an assumption that the latercooling of granite batholith was essentially controlled by the denudation of overlying crust, the uplift since early Cretaceous was very slow with a mean rate of ~0.05 mm/year (i.e., ~50 m/Ma). Estimates of total uplifts since 100 Ma, 70 Ma and 40 Ma to present-day are ~5 km, ~3.5 km and ~2 km, respectively. The consistent values of total uplifts from different locations may suggest a regional plateau uplift with a uniform rate over the whole granitic body.

Geochemistry and Molybdenum Mineralisation of the Shap Granite, Westmorland, Northern England (영국(英國)의 북부(北部) Westmorland 지역(地域)에 분포(分布)한 Snap 화강암(花崗岩)의 지화학적(地火學的) 연구(硏究)와 휘수연석(輝水鉛石)의 광화작용(鑛化作用)에 관(關)한 연구(硏究))

  • Kim, Sahng Yup
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.177-212
    • /
    • 1976
  • The Shap granite encloses well developed quartz veins and veinlets containing molybdenite in association with other ore sulphide minerals. The preliminary study of the geochemical aspects of the granite stock and mineralisation of molybdenite in comparison with the porphyry deposits is carried out; the distribution of major, minor and ore metal elements in wall rocks, altered envelope and veins, and the molybdenum mineralisation, mainly in connexion with hydrothermal alteration are discussed. The molybdenite and other ore mineralisation, especially bismuthinite and chalcopyrite, are spatially closely related to the hydrothermal alteration adjacent to the veinings, and are dominant where the strong orthoclase alteration has taken place. A pattern of alteration and mineralisation can be recognised and forms the basic for the subdivision of the quarry into several distinct zones, which correspond with the sequence of alteration and mineralisation. The veins, veinlets and their alteration haloes can be further subdivided into a series of concentric zones.

  • PDF

Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit : Their Genetic Implications (가곡 스카른 광상 월곡-선곡 광체의 광물.지구화학적 특성: 성인적 의미)

  • Choi, Bu-Kap;Choi, Seou-Gyu;Seo, Ji-Eun;Yoo, In-Kol;Kang, Heung-Suk;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.477-490
    • /
    • 2010
  • The Gagok stratabound skarn deposit is the result of the intrusion of the Cretaceous granitic pluton into the Paleozoic calcareous rocks. The subvolcanic intrusion ranges in composition from quartz monzonite to granite porphyry with I-type, calc-alkaline and weakly peraluminous characteristics. Both endoskarn and exoskarn are developed at the Gagok Zn-(Pb) deposit, with more exoskarn than endoskarn. Geochemical and mineralogical characteristics in the Seongok and Wolgok orebodies can be treated in terms of self-organization. Sphalerites in the Gagok ore can also incorporate minor amounts of Mn, Cd, Cu and In. Trace element concentrations in different orebodies vary because fractionation of a given element into sphalerite is influenced by formation temperature and the amount of sphalerite in the ore. A group of high In/Zn and Cd/Zn ratios in ores, and low Mn/Fe ratios in sphalerites are correlated with proximal processes of a magmatic source. The pattern of minor/trace element variations in ores and sphalcrites can be used for petrogenetic interprctation, e.g., orebody zonation related to crystallization temperature and fluid d sources.

The Nature of Gold Mineralization in the Archean Sunrise Dam Gold Deposit in Western Australia (호주 Sunrise Dam 광상의 금 광화작용)

  • Sung, Yoo-Hyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.429-441
    • /
    • 2010
  • The Sunrise Dam gold deposit is located approximately 850 km ENE of Perth, in the eastern part of the Yilgam Craton, Western Australia. The mine has produced approximately 153 t of Au at an average grade of 4.2 g/t, which stands for the most significant gold discoveries during the last decade in Western Australia. The deposit occurs in the Laverton Tectonic Zone corresponding to the corridor of structural complexity in the Laverton greenstone belt, and characterized by tight folding and thrusting. The mine stratigraphy consists of a complexly deformed and altered volcaniclastic and volcanic rocks. These have been overlain by a turbidite sequence containing generally well-sorted siltstones, sandstones and magnetite-rich shales, which are consistently fining upwards. These sequences have been intruded by quartz diorite, ultramafic dikes, and rhyodacite porphyry (Archean), and lamprophyre dikes (Palaeoproterozoic). These rocks constitute the asymmetric NNE-trending Spartan anticline with north-plunging thrust duplication of the BIF unit. The deposit is located on the western limb of this structure. Transported, fluvial-lacustrine and aeolean sediments lie unconformably over the deposit showing significant variation in relief. Gold mineralization occurs intermittently along a NE-trending corridor of ca. 4.5 km length. The 20 currently defined orebodies are centered on a series of parallel, gently-dipping ($\sim30^{\circ}$) and NESW trending shear zones with a thrust-duplex architecture and high-strain characteristics. The paragenetic sequence of the Sunrise Dam deposit can be divided into five hydrothermal stages ($D_1$, $D_2$, $D_3$, $D_4a$, $D_4b$), which are supported by distinctive features of the mineralogical assemblages. Among them, the D4a stage is the dominant episode of Au deposition, followed by the $D_4b$ stage, which is characterized by more diverse ore mineralogy including base metal sulfides, sulfosalts, and telluride minerals. The $D_4a$ stage contains higher proportions of microscopic free gold (48%) than D4b stage (12%), and pyrite is the principal host for native gold (electrum) followed by tetrahedrite-group minerals in both stages.

Shear Behavior Characteristics of Rock Joints Considering Roughness Parameters (암석 절리면의 거칠기와 전단거동의 특성 분석)

  • Kim, Dong-Kyu;Hong, Young-Ki;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.384-395
    • /
    • 2016
  • Both the roughness measurement tests and the multi-stage shear tests were carried out on the 110 rock joint samples in order to investigate the influences of rock type, joint roughness and normal stress on the shear behaviour of rock joints. Test samples were composed of quartz porphyry, dacite, granite and gneiss, which were classified into three detailed groups according to their JRC values. Roughness parameters of rock joints were analyzed by roughness measurement tests, and shear characteristics were also investigated by multi-stage shear tests. Both peak shear strength and shear stiffness were increased as both joint roughness and normal stress were increased, whereas dilation angles showed lower values at the lower roughness and higher normal stress conditions. Besides, shear characteristics obtained from all tests of four different rock types with different rock strengths showed irrelevant details, therefore the influences of both joint roughness and normal stress on shear behaviors were found to be more considerable than the strength of intact rock. The results obtained from both multi-stage shear tests and direct shear tests were finally compared, where the dilation angles obtained from multi-stage shear tests were found to be valid only for the first normal stress conditions.

A Study of Joint System for Groundwater Pathway (지하수 유로 조사를 위한 절리계의 응용지질학적 분석)

  • 최병렬
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 1998
  • The study area, Beulgok-myon Nonsan-goon Chungcheongnan-do is consist of Changri slate(Och, okcheon system), lithic tuff(Kslt, kyoungsang system), granite (Kqb, kyoungsang system) and quartz porphyry(Kgf, kyoungsang system). More than 3000 joints were measured and classified by direction. Main dipdirection/dips of Kqb are 228~257/73~88, 010~150/70~85, Och are 134~164/40~90, 214~249/55~89, Kslt are 291~332/75~82, 235~241/73~71. But Kgf are not appeared distinct directions of joint. In field, p-wave velocities(Vp) are measured on the bed rock. Vp of Kgf are $5000m(240^{\circ})~2380(360^{\circ})m/s$, Kqb are $3846(210^{\circ})~1408(150^{\circ})m/s$, Kslt are $5000(360^{\circ})~2323(150^{\circ})m/s$ and Och are $6657(180^{\circ})~2000(030^{\circ})m/s$. Also P-wave velocities on specimen are measured. It is slightely higher than it's measured on the bed rock. For engineering properties of rock, we measured Poisson's ratio, rigidity, Young's modulus and bulk modulus by dynamic method.

  • PDF

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Hydrothermal Cold-silver Mineralization of the Gajok Deposit in the Hongcheon Mining District, Korea (홍천 광화대, 가족 광상의 금.은 광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The Cretaceous Gajok gold-silver deposit within porphyry granite is located nearby the Cretaceous Pungam basin at the northeastern area in Republic of Korea. The Gajok gold-silver deposit is distinctively composed of a multiple-complex hydrothermal veins with comb, crustiform chalcedony quartz and vug textures, implying it was formed relatively shallower depth. The hypogene open-space filling veins could be divided into 5 paragenetic sequences, increasing tendency of Ag-rich electrum and Ag-phases with increasing paragenetic time. Electrum with high gold contents (${\sim}50$ atomic % Au) as well as sphalerite with high FeS contents (${\sim}6$ mole % FeS) are representative ore minerals in the middle stage. The late stage is characterized by silver-phase such like native silver and/or argentite, coexisting with Ag-rich electrum ($10{\sim}30$ atomic % Au) and Fe-poor sphalerite (< 1 mole % FeS). The ore-forming fluids evolution started at relatively high temperature and salinity (${\sim}360^{\circ}C$, ${\sim}7\;wt.%$ eq. NaCl) and were evolved by dilution and mixing mechanisms on the basis of fluid inclusion study. The gold-silver mineralization proceeded from ore-forming fluids containing greater amounts of less-evolved meteoric waters(${\delta}^{18}O$; $-0.6{\sim}-6.7\;%o$). These results imply that gold-silver mineralization of the Cretaceous Gaiok deposit formed at shallow-crustal level and could be categorized into low-sulfidation epithermal type, related to Cretaceous igneous activity.