• Title/Summary/Keyword: Quarantine pathogen

Search Result 82, Processing Time 0.028 seconds

Prevalence of feline calicivirus in Korean cats determined by an improved real-time RT-PCR assay

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Choi-Kyu Park
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.123-135
    • /
    • 2023
  • Feline calicivirus (FCV) is considered the main viral pathogen of feline upper respiratory tract disease (URTD). The frequent mutations of field FCV strains result in the poor diagnostic sensitivity of previously developed molecular diagnostic assays. In this study, a more sensitive real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for broad detection of currently circulating FCVs and comparatively evaluated the diagnostic performance with previously developed qRT-PCR assay using clinical samples collected from Korean cat populations. The developed qRT-PCR assay specifically amplified the FCV p30 gene with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 2%. Based on the clinical evaluation using 94 clinical samples obtained from URTD-suspected cats, the detection rate of FCV by the developed qRT-PCR assay was 47.9%, which was higher than that of the previous qRT-PCR assay (43.6%). The prevalence of FCV determined by the new qRT-PCR assay in this study was much higher than those of previous Korean studies determined by conventional RT-PCR assays. Due to the high sensitivity, specificity, and accuracy, the new qRT-PCR assay developed in this study will serve as a promising tool for etiological and epidemiological studies of FCV circulating in Korea. Furthermore, the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of FCV in Korea.

Genetic Structure of Macrophomina phaseolina Populations, the Causal Agent of Sesame Charcoal Rot Disease in Iran

  • Maryam Dolatkhah;Fariba ghaderi;Abdollah Ahmadpour
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.50-59
    • /
    • 2024
  • Charcoal rot disease, caused by the fungus Macrophomina phaseolina, is one of the most important diseases of Sesame (Sesamum indicum) all over the world. However, the population biology of M. phaseolina is poorly understood. In this study, M. phaseolina isolates from five different regions of Iran (Khuzestan, Fars, Bushehr, Hormozgan, and Kohgiluyeh & Boyer-Ahmad provinces) (n=200) were analyzed for genetic variation using inter simple sequence repeats marker. In total, 152 unique haplotypes were identified among the 200 M. phaseolina isolates, and gene diversity (H=0.46-0.84) and genotypic diversity were high in each of the regions. The structure analysis clustered five Iranian populations into two distinct groups, the individuals from group 1 were assigned to the Bushehr population and the individuals from Khuzestan, Fars, Hormozgan and Kohgiluyeh & Boyer-Ahmad were aggregated and formed group 2. The results matched with genetic differentiation and gene flow among regions. Analyses of the distribution of gene diversity within and among five Iranian populations were 61% and 39%, respectively. Our results showed that infected seeds are thought to be the dominant mechanism responsible for the spreading of the pathogen in southern parts of Iran. In summary, it is essential to have local quarantine and prevent seed exchanges between geographical populations to restrict the dispersal of pathogen over long distances and provide certified seeds in Iran.

Molecular Markers for the Rapid Detection of Colletotrichum coccodes, an Anthracnose Pathogen of Tomato (토마토 탄저병균 Colletotrichum coccodes 신속 검출 분자 마커)

  • Kim, Jun Young;Woon, Jang Si;Kim, Hyun Ju;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.186-192
    • /
    • 2018
  • Rapid and accurate detection methods for Colletotrichum coccodes, an anthracnose pathogen of pepper and tomato, were developed using PCR. A specific primer set, coccoTef-F/coccoTef-R, which was constructed by analyzing tef-$1{\alpha}$ genes from 13 species and 22 strains of Colletotrichum, could specifically detect C. coccodes at a level of 10 ng by conventional PCR method and at 10 pg by real-time PCR. The PCR-based methods were also capable of detecting C. coccodes in pepper and tomato seeds artificially infected with the pathogen. The developed PCR methods can be applied for rapid and accurate inspection of C. coccodes in the seeds intended for export or import.

Specific and Sensitive Detection of the Pear Scab Fungus Venturia nashicola by SYBR Green Real-Time PCR

  • Yun, Yeo Hong;Yoon, Seong Kwon;Jung, Jae Sung;Kim, Seong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1782-1786
    • /
    • 2015
  • A new improved PCR method has been developed for the rapid, reliable, and sensitive detection of Venturia nashicola, a destructive pathogen of scab disease in Japanese pear. The translation elongation factor-1 alpha gene-derived PCR primers specifically amplified a 257-bp-sized DNA band of the target gene from the genomic DNA of V. nashicola. No amplicon was produced from the genomic DNA of other Venturia spp. and reference fungal species tested. With the high detection limit of 10 fg DNA content, our real-time method could be used for the quarantine inspection and field monitoring of V. nashicola.

Development of PCR Primers to Detect Pseudomonas savastanoi pv. phaseolicola from the Bean Seeds (강낭콩 종자에서 Pseudomonas savastanoi pv. phaseolicola의 검출을 위한 PCR 프라이머의 개발)

  • Cho, Jung-Hee;Jeong, Min-Jung;Song, Min-Ji;Yim, Kyu-Ock;Lee, Hyok-In;Kim, Jung-Hee;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • PCR primers were developed to detect Pseudomonas savastanoi pv. phaseolicola, a causal agent of halo blight that occurs in all species of common bean (Phaseolus vulgaris L.), from the bean seeds. A primer set, Psp-JHF and Psp-JH-R, specifically amplified 513 bp fragment from Pseudomonas savastanoi pv. phaseolicola only. A nested primer set, psp-JH-F-ne and psp-JH-R-ne, designed from the $1^{st}$ PCR amplicon, amplified 169 bp fragment. The primer sets did not amplify any non-specific DNA from the seed extracts of Fabaceae including 4 beans, 2 soybeans, and 2 peas. The detection sensitivity of the nested PCR method developed in this study was much higher than that of ELISA and selective medium. PCR assays developed in this study should be useful to detect Pseudomonas savastanoi pv. phasolicola from the bean seeds.

Controlling by Effective Pruning of Twigs Showing Black Shoot Blight Disease Symptoms in Apple Trees (사과나무에서 가지검은마름병 억제를 위한 효율적 가지치기)

  • Han, Kyu Suk;Yu, Ji-Gang;Lee, Han-Beoyl;Oh, Chang-Sik;Yea, Mi Chi;Lee, Jong-Ho;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.269-275
    • /
    • 2016
  • Black shoot blight disease caused by Erwinia pyrifoliae have damaged economic loss to apple and pear growers until now since it was firstly reported in 1995 in Korea. This study was performed to reduce economic loss by mandatory eradication of all infected trees in case of more 10% disease incidence per orchard as official control. It also aims to set up effective management protocol for this disease by examining how far bacterial pathogen is present from the border of symptomatic and asymptomatic regions in infected apple twigs. Colony-PCR using isolated bacterial cells instead of genomic DNA was used to identify bacterial pathogen, EpSPF/EpSPR primer designed in enterobacterial repetitive intergenic consensus (ERIC) region was selected as specific for E. pyrifoliae. As results of monitoring of this disease during April to October in 2014-2015 by colony-PCR, occurrence of this disease was frequent from mid-May to early-July, when daily average temperature was around $25^{\circ}C$. Moreover, bacterial cells were continuously detected only in symptomatic regions and also asymptomatic regions of less than 20 cm from symptomatic regions. Therefore, we concluded that pruning of infected twigs at the region of more than 20 cm from symptomatic regions might be effective to manage black shoot blight disease in apple trees.

Virological Prevalence and Infection Patterns of Porcine Cytomegalovirus in Selected Pig Farms in Korea (한국 양돈장의 porcine cytomegalovirus 감염양상 및 바이러스학적 유병률)

  • Park, Choi-Kyu;Choi, Eun-Jin
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1451-1455
    • /
    • 2009
  • Porcine cytomegalovirus (PCMV) is a betaherpesvirus which causes reproductive failure in breeding sows and generalized infection in newborn piglets. It has worldwide distribution including Korea. Serological survey on this virus has been reported in 76.3% of pigs, but virological survey and epidemiological analysis on PCMV distribution have been reported in only a few papers in Korea. In this study, we investigated the virological prevalence and infection status of PCMV on a farm level in selected swine farms with respiratory diseases. A total of 1,938 blood samples taken from groups of pigs of different ages were collected from 31 farms distributed nationwide in 2006 and 2007 and tested by PCR to detect the presence of PCMV. Virological prevalence at farm level and pig level were 96.8% and 17.5%, respectively, suggesting that PCMV has endemically infected Korean pig herds. The prevalence at farm level in gilts, sows and suckling piglet groups were 16.7%, 36.7% and 56.7%, indicating that vertical infections frequently occurred in conception or newborn stage. Thereafter, detection rates of PCMV were slightly increased in pig groups aged 40 and 70 days (70.0% and 73.3%), and then gradually decreased as they aged - 33.3% in 100, 26.7% in 130 and 16.7% in 160 day old pig groups. The prevalence at pig level has similar patterns to that at farm level. With the passage of time, the variation of infection patterns of PCMV was investigated in four PCMV-positive farms. Three blood samples were collected at intervals of 6 months in each farm, and examined for presence of PCMV using PCR. The results revealed that once PCMV was introduced to the pig farms, it continuously circulated between and within groups of sows and piglets in those farms. Taken together, it can be concluded that PCMV has endemically infected Korean pig farms and has the potential risk for emerging pathogen in combination with the known endemic pathogens including porcine reproductive, respiratory syndrome virus and porcine circovirus type 2. Therefore, more research is needed on diagnosis, epidemiology and control strategy for PCMV on the field.

Development of a diagnostic system to detect potato virus T using RT-PCR and nested PCR (감자T바이러스 검정을 위한 RT-PCR 및 Nested PCR 진단시스템 개발)

  • Lee, Si Won;Shin, Yong-Gil;Lee, Jin-Young;Kim, Young-Suk;Yang, Mi Hee;Choi, In-Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.2
    • /
    • pp.99-103
    • /
    • 2015
  • Potato virus T (PVT) is a plant pathogen in the family Betaflexiviridae, group IV single-stranded positive sense RNA viruses. The major host of PVT is potato, and it has been reported in Ullucus tuberosus, Oxalis tuberosa and Tropaeolum tuberosum. This study aimed at developing reverse transcription (RT)-polymerase chain reaction (PCR) and nested PCR techniques for specific detection of PVT. Finally, Two RT-PCR primer sets were developed and verified. The RT-PCR products were amplified to 734 (PVT RT-PCR primer set 6) and 828 bp (PVT RT-PCR primer set 29) long to detect PVT. The nested PCR primer sets [PVT-N70/C20 ($734{\rightarrow}315bp$) and PVT-N75/C30 ($828{\rightarrow}529bp$)] were developed which are high sensitivity and verification for detection of PVT. Furthermore, a modified-positive control plasmid is use to verify contamination of laboratory in PVT detection. This study supported the diagnose PVT in potato or PVT related hosts.

Effect of X-irradiation on Citrus Canker Pathogen Xanthomonas citri subsp. citri of Satsuma Mandarin Fruits

  • Song, Min-A;Park, Jae Sin;Kim, Ki Deok;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing $1{\times}10^7cfu/ml$ of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The $D_{10}$ value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits.

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.