• Title/Summary/Keyword: Quantum key distribution

Search Result 50, Processing Time 0.029 seconds

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Single-Photon Generation and Low-Noise Detection based on APD for Quantum Key Distribution (양자키분배를 위한 단일광자 생성 및 APD 기반의 저잡음 검출)

  • Park, Jun-Bum;Abdessattar, Bouzid;Hwang, Sung-Hyen;Lim, Young-Geun;Moon, Sung-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1535_1536
    • /
    • 2009
  • 본 논문에서는 1.5um 파장대에서 감쇄기를 이용한 유사단일광원을 이용하여 단일광자검출의 특성을 실험적으로 분석하였다. Gated Geiger 모드에서 APD를 동작 하여 열적 노이즈에 따른 양자효율을 측정하였다. 또한 APD를 이용하여 단일광자를 고속으로 검출시 문제가 되는 afterpulsing 노이즈의 온도별 특성을 분석하였다.

  • PDF

양자 상태 수 변화에 따른 양자 암호키 분배 보안성 분석

  • Go, Hae-Sin;Im, Gyeong-Cheon;Kim, Gi-Ung;Seo, Chang-Ho;Lee, Jun-Gu
    • Information and Communications Magazine
    • /
    • v.31 no.9
    • /
    • pp.70-76
    • /
    • 2014
  • 절대 보안성을 제공하는 양자 키 분배 (quantum key distribution, QKD)는 양자 역학을 이용한 정보통신 응용 중 가장 현실적으로 유망한 분야이다. BB84는 가장 널리 알려진 양자 암호키 분배 프로토콜로써, 4개의 양자 상태를 사용한다. 그 이후, 6개의 양자 상태를 사용하는 six-state 프로토콜이 제안되었으며, 이는 기 제안된 BB84프로토콜 대비 더 높은 보안성을 보이는 것으로 알려져 있다. 또한 QKD의 암호키 전송률 및 보안성 증가를 위해 이중 큐빗 QKD 프로토콜이 제안되었다. 이중 큐빗은 하나의 광자에 편광, 위상, 그리고 주파수 등의 서로 다른 두 개의 변조를 하는 것이다. 이중 큐빗 QKD 프로토콜은 16개의 양자 상태를 사용하며, 심볼 오류율 (Symbol Error Rate, SER)관점에서 앞서 언급한 두 개의 프로토콜 보다 더 높은 보안성을 보장할 수 있다. 본고에서는 앞서 언급한 총 3종류의 QKD 프로토콜의 보안성을 분석하고 비교함으로써 양자 상태 증가에 따른 QKD보안성을 성능을 살펴본다.

Progress of renewable energy in India

  • Kar, Sanjay Kumar;Gopakumar, K.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.97-115
    • /
    • 2015
  • Energy holds key to economic growth and prosperity of India. Currently, India has very high-energy import dependence, especially in the case of crude oil (80%) and natural gas (40%). Even coal import has been increasing over the years. Considering India's population growth, emphasis on manufacturing, production, and service industry, energy consumption is bound to increase. More fossil energy consumption means greater dependence on energy import leading to widening trade deficit and current account deficit. Therefore, exploitation of indigenous renewable energy production is necessary. The paper reviews the progress and growth of renewable energy production, distribution, and consumption in India. The paper highlights some of the enablers of renewable energy in India. The authors discuss the opportunities and challenges of increasing share of renewable energy to reduce energy import and address issues of energy security in India. The findings suggest that India is ready for a quantum leap in renewable production by 2022.

Comparisons of error rate according to eavesdropping rate and basis number in quantum key distribution protocols BB84 and B92 (양자 키 분배 프로토콜 BB84 와 B92 에서 도청률과 기저의 수에 따른 error rate 비교)

  • Lee, Sun-Ah;Moon, Bong-Kyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.358-361
    • /
    • 2020
  • 양자 암호통신에서는 키를 실시간으로 안전하게 분배하는 양자 키 분배방식이 핵심이다. 본 논문에서는 양자 키 분배 방식인 BB84 protocol 과 B92 protocol 을 python 으로 구현(이를 Lee's code 라 명명)한다. 기존에 존재하는 양자 simulator 와 LEE's code 를 이용해 error rate 의 차이를 두 가지 관점(기저에 따른 차이, 도청률에 따른 차이)에서 비교한다. 이를 바탕으로 어떤 protocol 이 도청자로부터 더 취약한지 알아본 결과, B92 protocol 의 QBER 이 항상 높으므로 도청자를 잡아내기는 쉽지만, 기저가 두 가지 밖에 없으므로 도청자의 공격에는 취약함을 알 수 있다.

DFT and Time-dependant DFT Investigation of eLectronic Structure, Phosphorescence and Electroluminescence Properties of Iridium (III) Quinoxaline Complexes (Iridium (III) quinoxaline 착물의 전자 구조, 인광 및 전기 발광 특성에 대한 DFT 및 시간-의존 DFT 연구)

  • Zhou, Xiao-Qing;Li, Ying;Sun, Yan-Bo;Zhang, Hong-Xing
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.354-363
    • /
    • 2011
  • Quantum-chemistry study was explored to investigate the electronic structures, absorption and phosphorescence mechanism, as well as electroluminescence (EL) properties of three red-emitting Ir(III) complexes, $(fpmqx)_2Ir$(L) {fpmqx=2-(4-fluorophenyl)-3-methyl-quinoxaline; L=triazolylpyridine (trz) (1); L=picolinate (pic) (2) and L=acetylacetonate (acac) (3)}. The calculated results show that the HOMO distribution for 1 is mainly localized on trz moiety due to its stronger ${\pi}$-electron acceptor ability, and HOMO for 2 and 3 is the combination of Ir d- and phenyl ring ${\pi}$-orbital. The higher phosphorescence yields and differences among 1-3 are investigated in this paper. In addition, the reasons of higher EL efficiency of 2 than 1 and 3 have been rationalized.

Characterization of New Avalanche Photodiode Arrays for Positron Emission Tomography

  • Song, Tae-Yong;Park, Yong;Chung, Yong-Hyun;Jung, Jin-Ho;Jeong, Myung-Hwan;Min, Byung-Jun;Hong, Key-Jo;Choe, Yearn-Seong;Lee, Kyung-Han
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.45-45
    • /
    • 2003
  • The aim of this study was the characterization and performance validation of new prototype avalanche photodiode (APD) arrays for positron emission tomography (PET). Two different APD array prototypes (noted A and B) developed by Radiation Monitoring Device (RMD) have been investigated. Principal characteristics of the two APD array were measured and compared. In order to characterize and evaluate the APD performance, capacitance, doping concentration, quantum efficiency, gain and dark current were measured. The doping concentration that shows the impurity distribution within an APD pixel as a function of depth was derived from the relationship between capacitance and bias voltage. Quantum efficiency was measured using a mercury vapor light source and a monochromator used to select a wavelength within the range of 300 to 700 nm. Quantum efficiency measurements were done at 500 V, for which the APD gain is equal to one. For the gain measurements, a pencil beam with 450 nm in wavelength was illuminating the center of each pixel. The APD dark currents were measured as a function of gain and bias. A linear fitting method was used to determine the value of surface and bulk leakage currents. Mean quantum efficiencies measured at 400 and 450 nm were 0.41 and 0.54, for array A, and 0.50 and 0.65 for array B. Mean gain at a bias voltage of 1700 V, was 617.6 for array A and 515.7 for type B. The values based on linear fitting were 0.08${\pm}$0.02 nA 38.40${\pm}$6.26 nA, 0.08${\pm}$0.0l nA 36.87${\pm}$5.19 nA, and 0.05${\pm}$0.00 nA, 21.80${\pm}$1.30 nA in bulk surface leakage current for array A and B respectively. Results of characterization demonstrate the importance of performance measurement validating the capability of APD array as the detector for PET imaging.

  • PDF

Study of Temperature Uniformity Improvement of Inductive Heating in MOCVD Systems to Deposit White LED (백색 LED 증착용 MOCVD 장치에서 유도가열을 이용한 기판의 온도 균일도 향상에 관한 연구)

  • Hong, Kwang-Ki;Yang, Won-Kyun;Joo, Jung-Hoon;Lee, Seung-Ho;Lee, Tae-Wan
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.304-308
    • /
    • 2010
  • Deposition temperature uniformity of GaN based MQW (multiple quantum well) layers is an important key which affects the wavelength uniformity of white LEDs. Temperature uniformity was assessed by infrared images for both cases of a static and a rotating susceptor. Rotating the susceptor at 2.5 rpm over the induction heater gave 4.3% of temperature non-uniformity. Temperature distribution of the graphite susceptor over the induction heater was numerically modelled and agreed with experimental results.

Privacy Amplification of Correlated Key Decryption over Public Channels (공개 채널을 통한 상관 키 분산 암호화의 프라이버시 증폭)

  • Lee, Sun-Yui;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.73-78
    • /
    • 2018
  • In this paper, we consider a system where multiple sources are encrypted in separated nodes and sent through their respective public communication channels into a joint sink node. We are interested at the problem on protecting the security of an already existing system such above, which is found out to have correlated encryption keys. In particular, we focus on finding a solution without introducing additional secret keys and with minimal modification to minimize the cost and the risk of bringing down an already running system. We propose a solution under a security model where an eavesdropper obtains all ciphertexts, i.e., encrypted sources, by accessing available public communication channels. Our main technique is to use encoders of universal function to encode the ciphertexts before sending them to public communication channels.

Investigation on the Electrical Characteristics of mc-Si Wafer and Solar Cell with a Textured Surface by RIE (플라즈마기반 표면 Texturing 공정에 따른 다결정 실리콘 웨이퍼 표면물성과 태양전지 동작특성 연구)

  • Park, Kwang-Mook;Jung, Jee-Hee;Bae, So-Ik;Choi, Si-Young;Lee, Myoung-Bok
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • Reactive ion etching (RIE) technique for maskless surface texturing of mc-silicon solar wafers has been applied and succeed in fabricating a grass-like black-silicon with an average reflectance of $4{\pm}1%$ in a wavelength range of 300~1,200 nm. In order to investigate the optimized texturing conditions for mass production of high quantum efficiency solar cell Surface characteristics such as the spatial distribution of average reflectance, micrscopic surface morphology and minority carrier lifetime were monitored for samples from saw-damaged $15.6{\times}15.6\;cm^2$ bare wafer to key-processed wafers as well as the mc-Si solar cells. We observed that RIE textured wafers reveal lower average reflectance along from center to edges by 1% and referred the origin to the non-uniform surface structures with a depth of 2 times deeper and half-maximum width of 3 times. Samples with anti-reflection coating after forming emitter layer also revealed longer minority carrier lifetime by 40% for the edge compared to wafer center due to size effects. As results, mc-Si solar cells with RIE-textured surface also revealed higher efficiency by 2% and better external quantum efficiency by 15% for edge positions with higher height.