• Title/Summary/Keyword: Quantum calculations

Search Result 158, Processing Time 0.026 seconds

Differential Thermal Analysis and Quantum Chemical Consideration for Catalytic Stability of Ion Exchanged Faujasite Type Zeolite 1. Ni2+-Faujasite계 (이온교환된 Faujasite형 제올라이트의 촉매적 안정성에 대한 시차열분석 및 양자화학적 고찰; 1. Ni2+-Faujasite계)

  • Kim, Myung-Chul;Kim, Jong-Taik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 1993
  • The thermochemical stability of $Ni^{2+}-faujasite$ was studied by differential thermal analysis(DTA), thermal gravitational analysis(TGA), X-ray diffraction analysis(XRD) and quantum chemical calculations. Dehydration of $Ni^{2+}-faujasite$ was observed at 373-773K. A CNDO/2 calculations have been applied on cluster models for the representative T sites in faujasite to get total energy and wiberg bond orders. It has proved that the decrease of zeolitic crystallinity is directly related to the weakening of Al-O bonds in framework.

  • PDF

Quantitative Structure-Activity Relationships of Salicylic Acid Derivatives by Quantum Chemical Calculations (양자화학적 계산에 의한 살리씰산유도체의 정량적 구조-활성 상관관계)

  • Rhee, Jong-Dal
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.80-85
    • /
    • 1988
  • QSAR of Salicylic acid derivatives, as anti-inflammatory agent, classified into Group I (not-having-5-phenyl ones) and Group II (having-5-phenyl ones) were investigated by quantum chemical calculations. The results are below: not significant statistically for both of Group I and Group II, but significant for each Group. $potency=-8.46X_{5}+1.639\;n=5\;r=0.77\;se=0.31\;for\;Group\;I.$ $({\pm}4.05)\;({\pm}0.5)$ where $X_5$ means charge of carbon atom bonded to hydroxyl radical. $potency=0.16X_{19}+7427.38HO-6629.85X_{15}+4977.40X_{10}+351.51X_5+3378.84$ $({\pm}0.17)\;({\pm}10.18)\;({\pm}11.70)\;({\pm}33.78)\;({\pm}4.41)\;({\pm}13.13)$ n=7 r=0.99 se=0.019 for Group II. where $X_{19}$ and $X_{15}$ stand for charges of the para carbon and the first carbon atoms in phenyl radical, respectively and $X_{10}$, charge of carboxylic carbon atom, HO, HOMO energy. It seems to be possible to qualitatively predict potency of drug by Pearson's HSAB theory. It means that drug should possess low LUMO energy and high HOMO energy.

  • PDF

Two-Photon Absorption Cross Sections of Dithienothiophene-Based Molecules

  • Chung, Myung-Ae;Lee, Kwang-Sup;Jung, Sang-Don
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.221-225
    • /
    • 2002
  • We performed nonlinear transmission measurements and quantum-chemical calculations on dithienothiophene(DTT)-based molecules to gain insight into the effect of acceptor and donor groups on two-photon absorption(TPA) properties. The TPA intensity showed dispersion characteristics of the single-photon absorption spectrum. When the molecules included an asymmetric donor-acceptor pair, the single- and two-photon absorption maximum wavelengths were red-shifted more than when the molecules had a symmetric donor-donor structure. We interpreted this result as indicating that the $S_2$ state plays the dominating role in the absorption process of molecules with a symmetric structure. The experimental TPA ${\delta}$ values at the absorption peak wavelength showed a dependence on the structural variations. We found the self-consistent force-field theory and Hartree-Fock Hamiltonian with single configuration interaction formalism to be valid for evaluating TPA ${\delta}$. Although the quantum-chemical calculations slightly underestimated the experimental ${\delta}$ values obtained from nonlinear trans -mission measurements, they reasonably predicted the dependence of the ${\delta}$ value on the structural variations. We confirmed the role of molecular symmetry by observing that donor-donor substituted structure gave the highest experimental and theoretical TPA ${\delta}$ values and that the donor-acceptor substituted structure showed a greater red-shift in the TPA absorption maximum wavelength. Overall, the theoretical ${\delta}$ values of DTT-based molecules were in the order of $10^{-46}\;cm^4{\cdot}s{\cdot}photon^{-1}$ and are higher than that of AF-50 by nearly two orders of magnitude.

  • PDF

Molecular Design of Novel Conjugated Polymers for Blue-Light-Emitting Devices

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.961-966
    • /
    • 2003
  • A quantum-chemical study of conformations and electronic structures of polyheterocyclic derivatives with vinylenediheteroatom substituents at the 3- and 4-positions was performed to search for novel blue-lightemitting conjugated polymers. Conformational potential energy curves of the polymers were constructed as a function of the helical angle (a) through semiempirical Hartree-Fock band calculations at the Austin model 1 level. It is found that poly(3,4-vinylenedioxythiophene) possesses a quite flat curve in the range of α = 51.4°- 120°. Replacing S atoms for O atoms greatly increases repulsion between the neighboring units, and thereby the units become perpendicular to one another. Because of the hydrogen bonding between O and NH, poly(3,4- vinylenedioxypyrrole) is predicted to be anti-coplanar and poly(3,4-vinylenediaminofuran) to be nearly anticoplanar. According to the modified extended Huckel band calculations, the HOMO-LUMO gaps (HLGs) of the polymers, unless the polymer chains are twisted, are close to or slightly smaller than those of their respective mother polymers. Among the polymers, poly(3,4-vinylenedioxythiophene) is presumed to be the most probable candidate for a blue-light emitter because its HLG is within the range of the electronic requirement for blue-light emitters.

Theoretical Calculations of Metol as Corrosion Inhibitor of Steel (강철 부식 방지제인 메톨에 대한 이론적 계산)

  • Gece, Gokhan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.671-676
    • /
    • 2009
  • Described here for the first time is an investigation on geometrical and electronic molecular structure of metol (N-methyl-p-aminophenol sulphate) as corrosion inhibitor of steel using density functional theory (DFT) calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap ((${\Delta}E$), Mulliken charges (($q_M$) and natural atomic (($q_n$) charge have been calculated both for gas and aqueous phases by using B3LYP/6-31G+(d,p) basis set. The relation between the inhibition efficiency and quantum chemical parameters have been discussed in order to elucidate the inhibition mechanism of the title compound.

Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

  • Park, Kichul;Sung, Nack Kyun;Cho, Art E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.545-548
    • /
    • 2013
  • It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding $r^2$ = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.

Quantum-chemical Study of Effects of Alkoxy Substitution on the Conformations and Electronic Properties of Poly(p-phenylenevinylenes)

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • We have performed a quantum-chemical investigation on the conformations and electronic properties of a variety of methoxy-substituted poly(p-phenylenevinylenes) (PPVs) to elucidate the effects of alkoxy substitution. Geometrical parameters for the polymers were fully optimized through Austin Model I (AM I) semi-empirical Hartree-Fock (HF) band calculations. Electronic properties of the polymers were obtained by applying the AM I optimized structures to the modified extended Huckel method. To confirm validity of the AM I conformational results, we also carried out ab initio HF calculations with the 6-31G (d) basis set for a variety of methoxy-substituted divinylbenzenes. It is found that the potential energy surfaces of alkoxy-substituted PPVs are quite shallow around the planar conformations, suggesting that the prepared films possess a variety of conformations with different torsion angle in the solid state, depending on the synthetic conditions. When two alkoxy groups are concurrently substituted at the adjacent sites in the phenylene ring, these groups are subject to rotating around the C(sp2)-O bonds by 70-80° to avoid the strong steric repulsion between them. Consequently, the overlap between the π-type p orbital of oxygen and the π molecular orbitals of the polymer decreases. This leads to a wide gap and a high oxidation potential for tetramethoxy-substituted PPV, compared to those of dialkoxy-substituted PPV.

Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift (라만 분광분석과 NMR 화학 이동 양자 계산을 이용한 엔스테타이트에 용해된 탄소의 원자 환경 연구)

  • Kim, Eun-Jeong;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.289-300
    • /
    • 2011
  • Atomistic origins of carbon solubility into silicates are essential to understand the effect of carbon on the properties of silicates and evolution of the Earth system through igneous and volcanic processes. Here, we investigate the atomic structure and NMR properties of dissolved carbon in enstatite using Raman spectroscopy and quantum chemical calculations. Raman spectrum for enstatite synthesized with 2.4. wt% of amorphous carbon at 1.5 GPa and $1,400^{\circ}C$ shows vibrational modes of enstatite, but does not show any vibrational modes of $CO_2$ or ${CO_3}^{2-}$. The result indicates low solubility of carbon into enstatite at a given pressure and temperature conditions. Because $^{13}C$ NMR chemical shift is sensitive to local atomic structure around carbon and we calculated $^{13}C$ NMR chemical shielding tensors for C substituted enstatite cluster as well as molecular $CO_2$ using quantum chemical calculations to give insights into $^{13}C$ NMR chemical shifts of carbon in enstatite. The result shows that $^{13}C$ NMR chemical shift of $CO_2$ is 125 ppm, consistent with previous studies. Calculated $^{13}C$ NMR chemical shift of C is ~254 ppm. The current calculation will alllow us to assign potential $^{13}C$ NMR spectra for the enstatite dissolved with carbon and thus may be useful in exploring the atomic environment of carbon.

Spin-orbit Effects on the Structure of Haloiodomethane Cations CH2XI+ (X=F, Cl, Br, and I)

  • Kim, Hyoseok;Park, Young Choon;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.775-782
    • /
    • 2014
  • The importance of including spin-orbit interactions for the correct description of structures and vibrational frequencies of haloiodomethanes is demonstrated by density functional theory calculations with spin-orbit relativistic effective core potentials (SO-DFT). The vibrational frequencies and the molecular geometries obtained by SO-DFT calculations do not match with the experimental results as well as for other cations without significant relativistic effects. In this sense, the present data can be considered as a guideline in the development of the relativistic quantum chemical methods. The influence of spin-orbit effects on the bending frequency of the cation could well be recognized by comparing the experimental and calculated results for $CH_2BrI$ and $CH_2ClI$ cations. Spin-orbit effects on the geometries and vibrational frequencies of $CH_2XI$ (X=F, Cl, Br, and I) neutral are negligible except that C-I bond lengths of haloiodomethane neutral is slightly increased by the inclusion of spin-orbit effects. The $^2A^{\prime}$ and $^2A^{{\prime}{\prime}}$ states were found in the cations of haloiodomethanes and mix due to the spin-orbit interactions and generate two $^2E_{1/2}$ fine-structure states. The geometries of $CH_2XI^+$ (X=F and Cl) from SO-DFT calculations are roughly in the middle of two cation geometries from DFT calculations since two cation states of $CH_2XI$ (X=F and Cl) from DFT calculations are energetically close enough to mix two cation states. The geometries of $CH_2XI^+$ (X=Br and I) from SO-DFT calculations are close to that of the most stable cation from DFT calculations since two cation states of $CH_2XI$(X=Br and I) from DFT calculations are energetically well separated near the fine-structure state minimum.

The Development of Gamma Energy Identifying Algorithm for Compact Radiation Sensors Using Stepwise Refinement Technique

  • Yoo, Hyunjun;Kim, Yewon;Kim, Hyunduk;Yi, Yun;Cho, Gyuseong
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Background: A gamma energy identifying algorithm using spectral decomposition combined with smoothing method was suggested to confirm the existence of the artificial radio isotopes. The algorithm is composed by original pattern recognition method and smoothing method to enhance the performance to identify gamma energy of radiation sensors that have low energy resolution. Materials and Methods: The gamma energy identifying algorithm for the compact radiation sensor is a three-step of refinement process. Firstly, the magnitude set is calculated by the original spectral decomposition. Secondly, the magnitude of modeling error in the magnitude set is reduced by the smoothing method. Thirdly, the expected gamma energy is finally decided based on the enhanced magnitude set as a result of the spectral decomposition with the smoothing method. The algorithm was optimized for the designed radiation sensor composed of a CsI (Tl) scintillator and a silicon pin diode. Results and Discussion: The two performance parameters used to estimate the algorithm are the accuracy of expected gamma energy and the number of repeated calculations. The original gamma energy was accurately identified with the single energy of gamma radiation by adapting this modeling error reduction method. Also the average error decreased by half with the multi energies of gamma radiation in comparison to the original spectral decomposition. In addition, the number of repeated calculations also decreased by half even in low fluence conditions under $10^4$ ($/0.09cm^2$ of the scintillator surface). Conclusion: Through the development of this algorithm, we have confirmed the possibility of developing a product that can identify artificial radionuclides nearby using inexpensive radiation sensors that are easy to use by the public. Therefore, it can contribute to reduce the anxiety of the public exposure by determining the presence of artificial radionuclides in the vicinity.