• Title/Summary/Keyword: Quantum calculations

Search Result 158, Processing Time 0.028 seconds

Molecular Nodeling of Complexation of Alkyl Ammonium Ions by p-tert-Butylcalix[4]crown-6-ether

  • Choe, Jong In;Kim, Gwang Ho;Jang, Seok Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2000
  • The conformations and energies of p-tert-butylcalix[4] crown-6-ether (1) and its alkyl ammonium complexes have been simulated by AM1 semi-empirical quantum mechanics and molecular mechanics calculations using a variety of forcefields (MM2, MM+, CVFF). We performed molecular dynamics calculations to simulate the behavior of these coplexes primartily focusing on the three representative conformations (cone, partial cone, 1,3-alternate) of host molecule 1. When we performed AM1 semi-empirical and molecular mechanics calculations, the one conformation was generally found to be most stable for all the employed calculation methods. The primary binding site of host 1 for the recognition of alkyl ammonium guests was confirmed to be the central part of the crown moiety. The complexation enthalpy calculations revealed that the alkyl amonium cations having smaller and linear alkyl group showed the better complexation efficiencies when combined with p-tert-butylcalix[4]crown-6-ether, that is in satisfactory agreement with the experimental results.

Attenuation curves of neutrons from 400 to 550 Mev/u for Ca, Kr, Sn, and U ions in concrete on a graphite target for the design of shielding for the RAON in-flight fragment facility in Korea

  • Lee, Eunjoong;Kim, Junhyeok;Kim, Giyoon;Kim, Jinhwan;Park, Kyeongjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.275-283
    • /
    • 2019
  • Rare isotope beam facilities require shielding data in early stage of their design. There is much less shielding data on neutrons from the reactions between heavy ion beams and matter than the data on neutrons produced by protons. The purpose of the present work is to produce and thus increase the amount of shielding data on neutrons generated by high-energy heavy ion beams based on the RAON in-flight fragment facility. Calculations were performed with the computational Monte Carlo codes PHITS and MCNPX. The secondary neutron source terms were evaluated at 550 MeV/u for Ca, Kr, and Sn and at 400 MeV/u for U ions on a graphite target. Source terms and attenuation lengths were obtained by fitting the ambient dose equivalent inside an ordinary concrete shield.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Spin and Pseudo Spins in Theoretical Chemistry. A Unified View for Superposed and Entangled Quantum Systems

  • Yamaguchi, Y.;Nakano, M.;Nagao, H.;Okumura, M.;Yamanaka, S.;Kawakami, T.;Yamaki, D.;Nishino, M.;Shigeta, Y.;Kitagawa, Y.;Takano, Y.;Takahata, M.;Takeda, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.864-880
    • /
    • 2003
  • A unified picture for magnetism, superconductivity, quantum optics and other properties of molecule-based materials has been presented on the basis of effective model Hamiltonians, where necessary parameter values have been determined by the first principle calculations of cluster models and/or band models. These properties of the matetials are qualitatively discussed on the basis of the spin and pseudo-spin Hamiltonian models, where several quantum operators are expressed by spin variables under the two level approximation. As an example, ab initio broken-symmetry DFT calculations are performed for cyclic magnetic ring constructed of 34 hydrogen atoms in order to obtain effective exchange integrals in the spin Hamiltonian model. The natural orbital analysis of the DFT solution was performed to obtain symmetry-adapted molecular orbitals and their occupation numbers. Several chemical indices such as information entropy and unpaired electron density were calculated on the basis of the occupation numbers to elucidate the spin and pair correlations, and bonding characteristic (kinetic correlation) of this mesoscopic magnetic ring. Both classical and quantum effects for spin alignments and singlet spin-pair formations are discussed on the basis of the true spin Hamiltonian model in detail. Quantum effects are also discussed in the case of superconductivity, atom optics and quantum optics based on the pseudo spin Hamiltonian models. The coherent and squeezed states of spins, atoms and quantum field are discussed to obtain a unified picture for correlation, coherence and decoherence in future materials. Implications of theoretical results are examined in relation to recent experiments on molecule-based materials and molecular design of future molecular soft materials in the intersection area between molecular and biomolecular materials.

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

H-induced Magnetism at Stepped Si (100) Surface

  • Lee, Jun-Ho;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.211-211
    • /
    • 2012
  • Using spin-polarized density-functional theory calculations, we find that the existence of either Peierls instability or antiferromagnetic spin ordering is sensitive to hydrogen passivation near the step. As hydrogens are covered on the terrace, the dangling bond electrons are localized at the step, leading to step-induced states. We investigate the competition between charge and spin orderings in dangling-bond (DB) wires of increasing lengths fabricated on an H-terminated vicinal Si(001) surface. We find antiferromagnetic (AF) ordering to be energetically much more favorable than charge ordering. The energy preference of AF ordering shrinks in an oscillatory way as the wire length increases. This oscillatory behavior can be interpreted in terms of quantum size effects as the DB electrons fill discrete quantum levels.

  • PDF

Recent Development of Linear Scaling Quantum Theories in GAMESS

  • Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.733-738
    • /
    • 2003
  • Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Ruedenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error ε. In addition, a new parallel FMM algorithm, requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).