• Title/Summary/Keyword: Quantum Time

Search Result 487, Processing Time 0.031 seconds

Proposal of A Transaction Structure to Improve Compatibility of Blockchain regarding Post-Quantum Digital Signatures (블록체인의 양자 내성 전자서명 호환성을 증대하기 위한 트랜잭션 구조 제안)

  • Kim, Mee Yeon;Lee, Jun Yeong;Yoon, Kisoon;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • Researches on Post-quantum blockchain, which is a synthesis of blockchain and post-quantum cryptography[1], are relatively unrevealed areas but have needs to be studied with the regard to the quantum computers. However there could be several fundamental problems, e.g. unsustainably large size of public key and signature, or too lengthy time for sign and verification, if any post-quantum cryptography is adopted to the existing blockchain to implement post-quantum blockchain. Thus, a new method was proposed in this paper that produces fixed length of references for massive signatures and corresponding public keys to enable relatively lightweight transactions. This paper proposed the mechanism that included a new transaction structure and protocols, and demonstrated a post-quantum blockchain that the proposed mechanism was adopted. Through this research, it could enhance compatibility of blockchain regarding post-quantum digital signature, possibly reducing weights of the whole blockchain.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Analysis of Grover Attack Cost and Post-Quantum Security Strength Evaluation for Lightweight Cipher SPARKLE SCHWAEMM (경량암호 SPARKLE SCHWAEMM에 대한 Grover 공격 비용 분석 및 양자 후 보안 강도 평가)

  • Yang, Yu Jin;Jang, Kyung Bae;Kim, Hyun Ji;Song, Gyung Ju;Lim, Se Jin;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.453-460
    • /
    • 2022
  • As high-performance quantum computers are expected to be developed, studies are being actively conducted to build a post-quantum security system that is safe from potential quantum computer attacks. When the Grover's algorithm, a representative quantum algorithm, is used to search for a secret key in a symmetric key cryptography, there may be a safety problem in that the security strength of the cipher is reduced to the square root. NIST presents the post-quantum security strength estimated based on the cost of the Grover's algorithm required for an attack of the cryptographic algorithm as a post-quantum security requirement for symmetric key cryptography. The estimated cost of Grover's algorithm for the attack of symmetric key cryptography is determined by the quantum circuit complexity of the corresponding encryption algorithm. In this paper, the quantum circuit of the SCHWAEMM algorithm, AEAD family of SPARKLE, which was a finalist in NIST's lightweight cryptography competition, is efficiently implemented, and the quantum cost to apply the Grover's algorithm is analyzed. At this time, the cost according to the CDKM ripple-carry adder and the unbounded Fan-Out adder is compared together. Finally, we evaluate the post-quantum security strength of the lightweight cryptography SPARKLE SCHWAEMM algorithm based on the analyzed cost and NIST's post-quantum security requirements. A quantum programming tool, ProjectQ, is used to implement the quantum circuit and analyze its cost.

An Improved Dynamic Quantum-Size Pfair Scheduling for the Mode Change Environments (Mode Change 환경을 위한 개선된 동적 퀀텀 크기 Pfair 스케줄링)

  • Cha, Seong-Duk;Kim, In-Guk
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.279-288
    • /
    • 2007
  • Recently, Baruah et. al. proposed an optimal Pfair scheduling algorithm in the real-time multiprocessor system environments, and several variants of it were presented. All these algorithms assume the fixed unit quantum size. However, under Pfair based scheduling algorithms that are global scheduling technique, quantum size has direct influence on the scheduling overheads such as task switching and cache reload. We proposed a method for deciding the optimal quantum size[2] and an improved method for the task set whose utilization e is less than or equal to $e\;{\leq}\;p/3+1$[3]. However, these methods use repetitive computation of the task's utilization to determine the optimal quantum size. In this paper, we propose a more efficient method that can determine the optimal quantum size in constant time.

  • PDF

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Fast Switching Properties of TN Cell With Graphene Quantum Dots (그라핀 양자점을 도핑한 TN 셀의 고속 스위칭 특성)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • In this study, we report the doping effect of graphene quantum dots (QDs) in nematic liquid crystal (NLC) system on rubbed polyimide (PI) surface. The good LC alignment and high thermal stability in QD-LC cell system on rubbed PI surfaces can be measured. Also, the low threshold voltage of QD-TN cell was observed about 2.77 V. The fast response time of 13.2 ms for QD-TN cell can be achieved. Finally, the good voltage holding ratio of QD-TN cell on rubbed PI surface was measured.

Dynamic Quantum-Size Pfair Scheduling In the Mode Change Environments (Mode Change 환경에 적합한 동적 퀀텀 크기 스케줄링)

  • Kim In-Guk;Cha Seong-Duk
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.28-41
    • /
    • 2006
  • Recently, Baruah et.al. proposed an optimal Pfair scheduling algorithm in the hard real-time multiprocessor environments, and several variants of it were presented. All these algorithms assume the fixed unit quantum size, and this assumption has two problems in the mode change environments. If the quantum size is too large, it results in the scheduling failure due to the decreased processor utilization. If it is too small, it increases the frequency of scheduling points, and it incurs the task switching overheads. In this paper, we propose several methods that determine the maximum quantum size dynamically such that the task set can be scheduled in the mode change environments.

  • PDF

An Implementation of Improved Dynamic Quantum-Size Pfair Scheduling (개선된 동적 퀀텀 크기 Pfair 스케줄링의 구현)

  • Kim, Nam-Jin;Kim, In-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2760-2765
    • /
    • 2009
  • Pfair scheduling algorithm, which is an optimal scheduling algorithm in the hard real-time multiprocessor environments, is based on the fixed quantum size. Recently, several methods that determine the maximum quantum size dynamically were proposed in the mode change environments. But these methods considered the case in which the period of a task can only be decreased. In this paper, we consider the case in which the period of a task can be decreased or increased, and propose an improved method that determine the maximum quantum size dynamically in the mode change environments. A simulation shows that the proposed method is effective.

Dynamic Quantum-Size Pfair Scheduling Considering Task Set Characteristics (태스크 집합의 특성을 고려한 동적 퀀텀 크기 Pfair 스케줄링)

  • Cha, Seong-Duk;Kim, In-Guk
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.39-49
    • /
    • 2007
  • Since the PF scheduling algorithm[13], which is optimal in the hard real-time multiprocessor environments, several scheduling algorithms have been proposed. All these algorithms assume the fixed unit quantum size, and this assumption has problems in the mode change environments. To settle the problem, we already proposed a method for deciding the optimal quantum size[2]. In this paper, we propose improved methods considering the task set whose utilization e is less than or equal to p/3+1. As far as the numbers of computations used to determine the optimal quantum size are concerned, newly proposed methods are proved to be more efficient than our previous ones.