• Title/Summary/Keyword: Quantum Time

Search Result 487, Processing Time 0.026 seconds

Enhanced Photosensitivity in Monolayer MoS2 with PbS Quantum Dots

  • Cho, Sangeun;Jo, Yongcheol;Woo, Hyeonseok;Kim, Jongmin;Kwak, Jungwon;Kim, Hyungsang;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.47-49
    • /
    • 2017
  • Photocurrent enhancement has been investigated in monolayer (1L) $MoS_2$ with PbS quantum dots (QDs). A metal-semiconductor-metal (Au-1L $MoS_2$-Au) junction device is fabricated using a standard photolithography method. Considerably improved photo-electrical properties are obtained by coating PbS QDs on the Au-1L $MoS_2$-Au device. Time dependent photoconductivity and current-voltage characteristics are investigated. For the QDs-coated $MoS_2$ device, it is observed that the photocurrent is considerably enhanced and the decay life time becomes longer. We propose that carriers in QDs are excited and transferred to the $MoS_2$ channel under light illumination, improving the photocurrent of the 1L $MoS_2$ channel. Our experimental findings suggest that two-dimensional layered semiconductor materials combined with QDs could be used as building blocks for highly-sensitive optoelectronic detectors including radiation sensors.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

Modeling of free carrier absorption coefficients in anisotropic semiconductor quantum well structures (비등방성 반도체 양자우물에서의 자유전자 흡수에 의한 광자의 흡수계수의 모델링)

  • 김경염
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 1999
  • The theoretical modeling of free carrier absorption in quantum wells grown on anisotropic materials is presented for the first time. The intersubband and intrasubband free carrier absorption are distinguished and the contribution of each subband to them is calculated separately. The calculated results are compared with the experimental values of $\delta$-doped Si quantum wells in literature.

  • PDF

Phonon bottleneck effects of InAs quantum dots

  • Lee, Joo-In;Sungkyu Yu;Lee, Jae-Young m;Lee, Hyung-Gyoo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • We have studied the carrier relaxation of InAs/GaAs modulation-doped quantum dots depending on the excitation wavelength and modulation-doping concentration by using the time-ressolved spectroscopy. At the excitation below GaAs barrier band gap, the relaxation processes become very slow, implying to observe the phonon bottleneck effects. On the other hand, at the excitation far above GaAs band gap, phonon bottleneck effects are broken down due to Auger processes. Increasing modulation-doping concentration, the relaxation times, by virtue of Coulomb scattering between electrons in GaAs doped layer and carriers in InAs quantum dots, are observed to become fast.

  • PDF

CdTe Quantum Dots as Fluorescent Probes for Josamycin Determination

  • Peng, Jinyun;Nong, Keliang;Mu, Guangshan;Huang, Fengying
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2727-2731
    • /
    • 2011
  • A new method for the determination of josamycin has been developed based on quenching of the fluorescence of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by josamycin in ethanol. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with josamycin were investigated. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of josamycin between 12.0 and 120.0 ${\mu}g\;mL^{-1}$ with a correlation coefficient of 0.9956 and a detection limit of 2.5 ${\mu}g\;mL^{-1}$. The proposed method was successfully applied to commercial tablets, and the results were satisfactory, i.e. consistent with those of high-performance liquid chromatography (HPLC).

Electro-Optical Properties of Polyoxetane based Liquid Crystalline Polymer/Low Molecular Weight Liquid Crystal

  • Jang, Chi-Woong;Kwon, Oh-Jeong;Kim, Ku-Nam;Kwon, Young-Wan;Lim, Tong-Kun;Jin, Jung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.482-483
    • /
    • 2003
  • We have synthesized a new material of polyoxetane based liquid crystalline polymer/liquid crystal (LCP/LC) for flexible memory or dynamic mode device and characterized the electro-optics behavior of this system. The microscopic dynamic behavior of main chain, side chain, and the low molecular weight LC were characterized by X-ray scattering and time resolved FTIR..

  • PDF

Realization of Vertically Stacked InGaAs/GaAs Quantum Wires on V-Grooves with (322) Facet Sidewalls by CHEMICAL Beam Epitaxy

  • Kim, Sung-Bock;Ro, Jeong-Rae;Lee, El-Hang
    • ETRI Journal
    • /
    • v.20 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • We report, for the first time, the fabrication of vertically stacked InGaAs/GaAs quantum wires (QWRs) on V-grooved substrates by chemical beam epitaxy (CBE). To fabricate the vertically stacked QWRs structure, we have grown the GaAs resharpening barrier layers on V-grooves with (100)-(322) facet configuration instead of (100)-(111) base at 450 $^{\circ}C$. Under the conditions of low growth temperature, the growth rate of GaAs on the (322) sidewall is higher than that at the (100) bottom. Transmission electron microscopy verifies that the vertically stacked InGaAs QWRs were formed in sizes of about $200{\AA} {\times} 500{\sim}600 {\AA}$. Three distinct photoluminescence peaks related with side-quantum wells (QWLs), top-QWLs and QWRs were observed even at 200 K due to sufficient carrier and optical confinement. These results strongly suggest the existence of the quantized state in the vertically stacked InGaAs/GaAs QWRs grown by CBE.

  • PDF

Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures

  • Choi, Young-Hwan;Ryu, Guen-Hwan;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.626-630
    • /
    • 2017
  • GaN-based green light-emitting diode (LED) structures suffer from low internal quantum efficiency (IQE), known as the "green gap" problem. The IQE of LED structures is expected to be improved to some extent by exploiting the Purcell effect. In this study, the Purcell effect on the IQE of green LED structures is investigated numerically using a finite-difference time-domain simulation. The Purcell factor of flip-chip LED structures is found to be more than three times as high as that of epi-up LED structures, which is attributed to the high-reflectance mirror near the active region in the flip-chip LED structures. When the unmodified IQE is 20%, the relative enhancement of IQE can be greater than 50%, without utilizing the surface-plasmon coupling effect. Based on the simulation results, the "green gap" problem of GaN-based green LEDs is expected to be mitigated significantly by optimizing flip-chip LED structures to maximize the Purcell effect.

Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy

  • Kwon, Se Ra;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.387-391
    • /
    • 2014
  • Self-assembled InAlAs/AlGaAs quantum dots (QDs) on GaAs substrates were grown by using modified molecular epitaxy beam in Stranski-Krastanov method. In order to study the structural and optical properties of InAlAs/AlGaAs QDs, atomic force microscopy (AFM) and photoluminescence (PL) measurements are conducted. The size and uniformity of QDs have been observed from the AFM images. The average widths and heights of QDs are increased as the deposition time increases. The PL spectra of QDs are composed of two peaks. The PL spectra of QDs were analyzed by the excitation laser power- and temperature-dependent PL, in which two PL peaks are attributed to two predominant sizes of QDs.

Visualization of micro-interfacial conditions using Micro PIV

  • OKAMOTO Koji;SHINOHARA Kyosuke;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.111-118
    • /
    • 2004
  • A new micro-resolution PIV (Particle Image. Velocimetry) has been developed. To investigate transient phenomena in a microfluidic device, Dynamic micro-PIV system was realized by combining a high-speed camera and a CW(Continuous Wave) laser. The technique was applied to a micro-counter-current flow, consisting of water and butyl acetate. The velocity fields of water in the micro counter-current flow were visualized for a time resolution of 500 $\{mu}s$ and a spatial resolution of 2.2 x 2.2 $\{mu}m$. Using the Dynamic micro-PIV technique, the vortex-like motions of fluorescent particles at the water-butyl acetate interface were captured clearly

  • PDF