• Title/Summary/Keyword: Quantum Resource

Search Result 24, Processing Time 0.02 seconds

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

Comparative analysis of quantum circuit implementation for domestic and international hash functions (국내·국제 해시함수에 대한 양자회로 구현 비교 분석)

  • Gyeong Ju Song;Min Ho Song;Hwa Jeong Seo
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The advent of quantum computers threatens the security of existing hash functions. In this paper, we confirmed the implementation results of quantum circuits for domestic/international hash functions, LSH, SHA2, SHA3 and SM3, and conducted a comparative analysis. To operate the existing hash function in a quantum computer, it must be implemented as a quantum circuit, and the quantum security strength can be confirmed by estimating the necessary quantum resources. We compared methods of quantum circuit implementation and results of quantum resource estimation in various aspects and discussed ways to meet quantum computer security in the future.

Resource Eestimation of Grover Algorithm through Hash Function LSH Quantum Circuit Optimization (해시함수 LSH 양자 회로 최적화를 통한 그루버 알고리즘 적용 자원 추정)

  • Song, Gyeong-ju;Jang, Kyung-bae;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.323-330
    • /
    • 2021
  • Recently, the advantages of high-speed arithmetic in quantum computers have been known, and interest in quantum circuits utilizing qubits has increased. The Grover algorithm is a quantum algorithm that can reduce n-bit security level symmetric key cryptography and hash functions to n/2-bit security level. Since the Grover algorithm work on quantum computers, the symmetric cryptographic technique and hash function to be applied must be implemented in a quantum circuit. This is the motivation for these studies, and recently, research on implementing symmetric cryptographic technique and hash functions in quantum circuits has been actively conducted. However, at present, in a situation where the number of qubits is limited, we are interested in implementing with the minimum number of qubits and aim for efficient implementation. In this paper, the domestic hash function LSH is efficiently implemented using qubits recycling and pre-computation. Also, major operations such as Mix and Final were efficiently implemented as quantum circuits using ProjectQ, a quantum programming tool provided by IBM, and the quantum resources required for this were evaluated.

Optimization of LEA Quantum Circuits to Apply Grover's Algorithm (그루버 알고리즘 적용을 위한 LEA 양자 회로 최적화)

  • Jang, Kyung Bae;Kim, Hyun Jun;Park, Jae Hoon;Song, Gyeung Ju;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2021
  • Quantum algorithms and quantum computers can break the security of many of the ciphers we currently use. If Grover's algorithm is applied to a symmetric key cipher with n-bit security level, the security level can be lowered to (n/2)-bit. In order to apply Grover's algorithm, it is most important to optimize the target cipher as a quantum circuit because the symmetric key cipher must be implemented as a quantum circuit in the oracle function. Accordingly, researches on implementing AES(Advanced Encryption Standard) or lightweight block ciphers as quantum circuits have been actively conducted in recent years. In this paper, korean lightweight block cipher LEA was optimized and implemented as a quantum circuit. Compared to the previous LEA quantum circuit implementation, quantum gates were used more, but qubits were drastically reduced, and performance evaluation was performed for this tradeoff problem. Finally, we evaluated quantum resources for applying Grover's algorithm to the proposed LEA implementation.

LINEAR PROGRAMMING OPTIMIZATION OF NUCLEAR ENERGY STRATEGY WITH SODIUM-COOLED FAST REACTORS

  • Lee, Je-Whan;Jeong, Yong-Hoon;Chang, Yoon-Il;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.383-390
    • /
    • 2011
  • Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters.

Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving (운동 양자 체(Kinetic Quantum Sieving) 효과를 가진 나노다공성 물질을 활용한 수소동위원소 분리 동향)

  • Lee, Seulji;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.465-470
    • /
    • 2021
  • Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.

A Study on the Chemical Constituents from Marine Sponge Luffariella sp. (해면 Luffariella sp.의 화학적 성분 연구)

  • Park, Sun Ku;Kim, Sung Soo;Park, Jun Dae;Hong, Jung Sun;Kim, In Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.559-563
    • /
    • 1995
  • The three metabolites, Germacrene alcohol(1), Aaptamine(2) and Hexacyclic terpene(3) were isolated from Marine Sponge Luffariella sp., collected in October 1992, Manado Bay, Sulawesi in Indonesia showed in vitro activity against KB cancer cell line, and structure assignment for 1 was corrected by comparison of their spectral data with the literature $values^1$. Their structure were elucidated by $^1H$, $^13C$ NMR, $^1H$ $^13C$(1 bond) Heteronuclear Multiple Quantum Coherence Spectroscopy$(HMQC)^2$, $^1H$ $^13C$(2 and 3 bond) Heteronuclear Multiple Bond Correlation Spectroscopy$(HMBC)^3$, Electron Impact Mass Spectroscopy(EI ms), Ultra-violet Spectroscopy(UV) and Infrared Spectroscopy(IR).

  • PDF

A study on Chemical Constituents from Marine Sponge Luffariella sp. (해양 해면 Luffariella sp.의 화학적 성분에 대한 연구)

  • Park, Sun Ku;Kim, Taek Jae;Cho, Hyun-Woo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.355-363
    • /
    • 1996
  • The two metabolites, Aaptamine(1) and Demethyl(oxy)aaptamine(2) were isolated from marine Sponge Luffariella sp., collected in October 1992, Manado Bay, Sulawesi in Indonesia showed in vitro activity against KB cancer cell line. Their structures were elucidated by $^1H-$, $^{13}C-NMR$, $^1H-^{13}C$(1 bond) heteronuclear multiple quantum coherence spectroscopy(HMQC), electron ionization mass spectroscopy(EIMS), ultra-violet spectroscopy(UV) and infrared spectroscopy(IR).

  • PDF

Hybrid Resource Allocation Scheme in Secure Intelligent Reflecting Surface-Assisted IoT

  • Su, Yumeng;Gao, Hongyuan;Zhang, Shibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3256-3274
    • /
    • 2022
  • With the rapid development of information and communications technology, the construction of efficient, reliable, and safe Internet of Things (IoT) is an inevitable trend in order to meet high-quality demands for the forthcoming 6G communications. In this paper, we study a secure intelligent reflecting surface (IRS)-assisted IoT system where malicious eavesdropper trying to sniff out the desired information from the transmission links between the IRS and legitimate IoT devices. We discuss the system overall performance and propose a hybrid resource allocation scheme for maximizing the secrecy capacity and secrecy energy efficiency. In order to achieve the trade-off between transmission reliability, communication security, and energy efficiency, we develop a quantum-inspired marine predator algorithm (QMPA) for realizing rational configuration of system resources and prevent from eavesdropping. Simulation results demonstrate the superiority of the QMPA over other strategies. It is also indicated that proper IRS deployment and power allocation are beneficial for the enhancement of system overall capacity.

The Chemical Constituents from the Sponge Spongia sp. (해면 Spongia sp.의 화학적 성분 연구)

  • Park, Sun-Ku;Oh, Chang-Sok;Scheuer, Paul-J.
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.301-305
    • /
    • 1995
  • The cytotoxic metabolites, against the KB cell line, halenaquinone, epispongiatriol and aldisin were isolated from the sponge Spongia sp. collected in September 1992, Manado Bay, Sulawesi in Indonesia. Their structures were elucidated by 1H, 13C NMR, 1H 13C(1 bond) Heteronuclear Multiple Quantum Coherence Spectroscopy (HMQC), 1H 13C(2 and 3 bond) Heteronuclear Multiple Bond Correlation Spectroscopy (HMBC), Electron Impact Mass Spectroscopy (EI ms) and Infrared Spectroscopy (IR).

  • PDF