• Title/Summary/Keyword: Quantum Communication

Search Result 191, Processing Time 0.042 seconds

Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser (원형 수직 캐비티 표면 광방출 레이저의 모드특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • The resonance properties of circular vertical-cavity surface-emitting lasers (VCSELs) are studied by using a newly developed equivalent network approach. Optical parameters, such as the stop-band or the reflectivity of periodic Bragg mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of circular modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular VCSELs.

Real-Time Communication using TMO(Time-Triggered and Message-Triggered Object) in Distributed Computing Systems

  • Kim, Gwang-Jun;Kim, Chun-Suk;Kim, Yong-Gin;Yoon, Chan-Ho;Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.12-22
    • /
    • 2003
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the TMO (Time-triggered Message-triggered Object) structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time triggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but semantically powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C++ and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Privacy Amplification of Correlated Key Decryption over Public Channels (공개 채널을 통한 상관 키 분산 암호화의 프라이버시 증폭)

  • Lee, Sun-Yui;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.73-78
    • /
    • 2018
  • In this paper, we consider a system where multiple sources are encrypted in separated nodes and sent through their respective public communication channels into a joint sink node. We are interested at the problem on protecting the security of an already existing system such above, which is found out to have correlated encryption keys. In particular, we focus on finding a solution without introducing additional secret keys and with minimal modification to minimize the cost and the risk of bringing down an already running system. We propose a solution under a security model where an eavesdropper obtains all ciphertexts, i.e., encrypted sources, by accessing available public communication channels. Our main technique is to use encoders of universal function to encode the ciphertexts before sending them to public communication channels.

An enhanced method using NP-complete problem in Public Key Cryptography System (NP-complete 문제를 이용한 공개키 암호 시스템 개선)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2865-2870
    • /
    • 2015
  • Recently, due to the hardware computing enhancement such as quantum computers, the amount of information that can be processed in a short period of time is growing exponentially. The cryptography system proposed by Koblitz and Fellows has a problem that it can not be guaranteed that the problem finding perfect dominating set is NP-complete in specific 3-regular graphs because the number of invariant polynomial can not be generated enough. In this paper, we propose an enhanced method to improve the vulnerability in 3-regular graph by generating plenty of invariant polynomials.

High Level Approach Programming in Real Time Distributed Network System

  • Jeong, Chan-Joo;Kim, Gwang-Jun;Lee, Joon;Nam, Ki-Hwan;Bae, Chul-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1105-1108
    • /
    • 2002
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the TMO(Time-triggered Message-triggered Object)structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time tiggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but semantically powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C++ and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems.

  • PDF

Fabrication process and device characterization of distributed feedback InGaAsP/InP laser diodes for optical fiber communication module (광통신 모듈용 분포 귀환형 InGaAsP/InP 레이저 다이오드 제작 및 소자 특성평가)

  • Jeon, Kyung-Nam;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2011
  • We fabricated distributed feedback InGaAsP/InP laser diodes for optical fiber communication module and characterized the lasing properties in continuous wave operation. The active layer of 7-period InGaAsP(1.127 eV)/InGaAsP(0.954 eV) multi-quantum well structure was grown by the metal-organic chemical vapor deposition. The grating for waveguide was also fabricated by the implementation of the Mach-Zehender holographic method of two laser beams interference of He- Cd laser and the fabricated laser diode has the dimension of the laser length of $400{\mu}m$ and the ridge width of $1.2{\mu}m$. The laser diode shows the threshold current of 3.59 mA, the threshold voltage of 1.059 V. For the room-temperature operation with the current of 13.54 mA and the voltage of 1.12 V, the peak wavelength is about 1309.70 nm and optical power is 13.254 mW.

Silence Reporting for Cooperative Sensing in Cognitive Radio Networks

  • Kim, Do-Yun;Choi, Young-June;Choi, Jeung Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • A cooperative spectrum sensing has been proposed to improve the sensing performance in cognitive radio (CR) network. However, cooperative sensing causes additional overhead for reporting the result of local sensing to the fusion center. In this paper, we propose a technique to reduce the overhead of data transmission of cooperative sensing for applying the quantum data fusion technique in cognitive radio networks by omitting the lowest quantized in the local sensed results. If a CR node senses the lowest quantized level, it will not send its local sensing data in the corresponding sensing period. The fusion center can implcitly know that a spectific CR node sensed lowest level if there is no report from that CR node. The goal of proposed sensing policy is to reduce the overhead of quantized data fusion scheme for cooperative sensing. Also, our scheme can be adapted to all quantized data fusion schemes because it only deal with the form of the quantized data report. The experimental results show that the proposed scheme improves performance in terms of reporting overhead.

A Three-layered Optical Waveguide of Second-order Orbital Angular Momentum Mode Guiding for Photonic Integrated Circuit (3층 구조를 가지는 광 집적회로용 2차 궤도 각운동량 광 도파로)

  • Lee, In-Joon;Kim, Sang-In
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.645-650
    • /
    • 2019
  • In this paper, a specifically designed waveguide structure that can carry first, and second-order orbital angular momentum(: OAM) mode is proposed. The proposed optical waveguide consists of three Si stripes embedded in $SiO_2$, which is suitable for implementing on-chip integration and fabrication by standard thin film deposition and etching processes. The second-order OAM mode was generated by combining two eigenmodes, which are calculated by finite difference method(: FDM). The topological charge number of the first, and second-order OAM mode was calculated as l=0.9642 and 1.8766 respectively, which is close to the theoretical value.

Higher-Order Masking Scheme against DPA Attack in Practice: McEliece Cryptosystem Based on QD-MDPC Code

  • Han, Mu;Wang, Yunwen;Ma, Shidian;Wan, Ailan;Liu, Shuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1100-1123
    • /
    • 2019
  • A code-based cryptosystem can resist quantum-computing attacks. However, an original system based on the Goppa code has a large key size, which makes it unpractical in embedded devices with limited sources. Many special error-correcting codes have recently been developed to reduce the key size, and yet these systems are easily broken through side channel attacks, particularly differential power analysis (DPA) attacks, when they are applied to hardware devices. To address this problem, a higher-order masking scheme for a McEliece cryptosystem based on the quasi-dyadic moderate density parity check (QD-MDPC) code has been proposed. The proposed scheme has a small key size and is able to resist DPA attacks. In this paper, a novel McEliece cryptosystem based on the QD-MDPC code is demonstrated. The key size of this novel cryptosystem is reduced by 78 times, which meets the requirements of embedded devices. Further, based on the novel cryptosystem, a higher-order masking scheme was developed by constructing an extension Ishai-Sahai-Wagne (ISW) masking scheme. The authenticity and integrity analysis verify that the proposed scheme has higher security than conventional approaches. Finally, a side channel attack experiment was also conducted to verify that the novel masking system is able to defend against high-order DPA attacks on hardware devices. Based on the experimental validation, it can be concluded that the proposed higher-order masking scheme can be applied as an advanced protection solution for devices with limited resources.