• 제목/요약/키워드: Quantitative reverse transcription-PCR

검색결과 183건 처리시간 0.031초

Upregulated Myc Expression in N-Methyl Nitrosourea (MNU)-induced Rat Mammary Tumours

  • Barathidasan, Rajamani;Pawaiya, Rajveer Singh;Rai, Ram Bahal;Dhama, Kuldeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4883-4889
    • /
    • 2013
  • Background: The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. Materials and Methods: Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. Results: Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75-91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. Conclusions: Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Molecular Cloning, Protein Expression, and Regulatory Mechanisms of the Chitinase Gene from Spodoptera littoralis Nucleopolyhedrovirus

  • Yasser, Norhan;Salem, Reda;Alkhazindar, Maha;Abdelhamid, Ismail A.;Ghozlan, Said A.S.;Elmenofy, Wael
    • 한국미생물·생명공학회지
    • /
    • 제49권3호
    • /
    • pp.305-315
    • /
    • 2021
  • The cotton leafworm, Spodoptera littoralis, is a major pest in Egypt and many countries worldwide, and causes heavy economic losses. As a result, management measures to control the spread of the worm are required. S. littoralis nucleopolyhedrovirus (SpliNPV) is one of the most promising bioagents for the efficient control of insect pests. In this study, a chitinase gene (chitA) of a 1.8 kb DNA fragment was cloned and fully characterized from SpliNPV-EG1, an Egyptian isolate. A sequence of 601 amino acids was deduced when the gene was completely sequenced with a predicted molecular mass of 67 kDa for the preprotein. Transcriptional analyses using reverse transcription polymerase chain reaction (RT-PCR) revealed that chitA transcripts were detected first at 12 h post infection (hpi) and remained detectable until 168 hpi, suggesting their transcriptional regulation from a putative late promoter motif. In addition, quantitative analysis using quantitative RT-PCR showed a steady increase of 7.86-fold at 12 hpi in chitA transcription levels, which increased up to 71.4-fold at 120 hpi. An approximately 50 kDa protein fragment with chitinolytic activity was purified from ChitA-induced bacterial culture and detected by western blotting with an anti-recombinant SpliNPV chitinase antibody. Moreover, purification of the expressed ChitA recombinant protein showed in vitro growth inhibition of two different fungi species, Fusarium solani and F. oxysporum, confirming that the enzyme assembly and activity was correct. The results supported the potential role and application of the SpliNPV-ChitA protein as a synergistic agent in agricultural fungal and pest control programs.

Development and evaluation of a triplex real-time quantitative reverse transcription-polymerase chain reaction for rapid and differential detection of three feline respiratory viral pathogens

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Ji-Hoon Park;Yeun-Kyung Shin;Hae-Eun Kang;Jung-Hoon Kwon;Won-Jae Lee;Min Jang;Sang-Kwon Lee;Ho-Seong Cho;Yeonsu Oh;Oh-Deog Kwon;Choi-Kyu Park
    • 한국동물위생학회지
    • /
    • 제46권4호
    • /
    • pp.269-281
    • /
    • 2023
  • In this study, a new triplex real-time quantitative reverse transcription polymerase chain reaction (tqRT-PCR) assay was developed for the rapid and differential detection of three feline viral pathogens including feline calicivirus (FCV), feline herpesvirus 1 (FHV-1), and influenza A virus (IAV) in a single reaction. The assay specifically amplified three targeted viral genes with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with intra- and inter-assay coefficients of variation of less than 1%. Based on the diagnostic results of the assay using 120 clinical samples obtained from cats with feline respiratory disease complex (FRDC)-suspected signs, the prevalence of FCV, FHV-1, or IAV was 43.3%, 22.5%, or 0%, respectively, indicating that the diagnostic sensitivity was comparable or superior to those of previously reported monoplex qRT-PCR/qPCR assays. The dual infection rate for FCV and FHV-1 was 8.3%. These results indicate that FCV and FHV-1 are widespread and that co-infection with FCV and FHV-1 frequently occur in the Korean cat population. The developed tqRT-PCR assay will serve as a promising tool for etiological and epidemiological studies of these three bacterial pathogens, and the prevalence data for three feline viruses obtained in this study will contribute to expanding knowledge about the epidemiology of FRDC in the current Korean cat population.

Identification of anti-HIV and anti-Reverse Transcriptase activity from Tetracera scandens

  • Kwon, Hyeok-Sang;Park, Jung-Ae;Kim, Joo-Hwan;You, Ji-Chang
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.165-170
    • /
    • 2012
  • We report here that an ethanol extract of Tetracera scandens, a Vietnamese medicinal plant, has anti-HIV activity and possesses strong inhibitory activity against HIV-1 reverse transcriptase (RTase). Using a MT-4 cell-based assay, we found that the T. scandens extract inhibited effectively HIV virus replication with an $IC_{50}$ value in the range of 2.0-2.5 ${\mu}g$/ml while the cellular toxicity value (CC50) was more than 40-50 ${\mu}g$/ml concentration, thus yielding a minimum specificity index of 20-fold. Moreover, the anti-HIV efficacy of the T. scandens extract was determined to be due, in part, to its potent inhibitory activity against HIV-1 RTase activity in vitro. The inhibitory activity against the RTase was further confirmed by probing viral cDNA production, an intermediate of viral reverse transcription, in virus-infected cells using quantitative DNA-PCR analysis. Thus, these results suggest that T. scandens can be a useful source for the isolation and development of new anti-HIV-1 inhibitor(s).

Quantitative Real-Time RT-PCR of ITGA7, SVEP1, TNS1, LPHN3, SEMA3G, KLB and MMP13 mRNA Expression in Breast Cancer

  • Kotepui, Manas;Thawornkuno, Charin;Chavalitshewinkoon-Petmitr, Porntip;Punyarit, Phaibul;Petmitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5879-5882
    • /
    • 2012
  • Breast cancer is the leading cause of cancer deaths among women worldwide, including Thailand. In the present study, the differential mRNA expression of SVEP1, LPHN3, KLB, ITGA7, SEMA3G, TNS1 and MMP13 genes was examined in breast cancer using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR). Among these genes, increased LPHN3 and MMP13 mRNA expression levels correlated with axillary-node metastasis (P=0.02). Multiple logistic regression analysis revealed that LPHN3 and MMP13 mRNA expression is significantly associated with axillary node status in breast cancer (P=0.04).

Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

  • Al-Daoude, Antonious;Shoaib, Amina;Al-Shehadah, Eyad;Jawhar, Mohammad;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.425-431
    • /
    • 2014
  • Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

Gene Expression Analysis of Pregnant Specific Stage in the Miniature Pig Ovary

  • Yun, Seong-Jo;Noh, Won-Gun;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.249-255
    • /
    • 2009
  • The miniature pig is considered to be a better organ donor breed for xenotransplantation than other pig breeds because the size of the organs of the miniature pig is similar to that of humans. In this study, we aimed at identifying differentially expressed genes in the miniature pig ovary during pregnancy. For this, we used the miniature pig ovary model, annealing control primer-based reverse transcription polymerase chain reaction (PCR), quantitative real-time PCR (qRT-PCR), and northern blotting analysis. We identified 13 genes showing differential expression on the based of pregnancy status and validated 8 genes using qRT-PCR. We also sequenced the full-length cDNA of ephrin receptor A4 (EphA4), which had a significant difference in expression level, and validated it by northern blotting. These genes may provide a better understanding of the cellular and molecular mechanisms during pregnancy in miniature pig ovary.

Identification of CCL1 as a Gene Differentially Expressed in $CD4^+$ T cells Expressing TIM-3

  • Jun, Ka-Jung;Lee, Mi-Jin;Shin, Dong-Chul;Woo, Min-Yeong;Kim, Kyong-Min;Park, Sun
    • IMMUNE NETWORK
    • /
    • 제11권4호
    • /
    • pp.203-209
    • /
    • 2011
  • Background: T cell immunoglobulin mucin containing molecule (TIM)-3 is expressed in differentiated Th1 cells and is involved in the suppression of the cytokine production by these cells. However, the regulation of the expression of other T cell genes by TIM-3 is unclear. Herein, we attempted to identify differentially expressed genes in cells abundantly expressing TIM-3 compared to cells with low expression of TIM-3. Methods: TIM-3 overexpressing cell clones were established by transfection of Jurkat T cells with TIM-3 expression vector. For screening of differentially expressed genes, gene fishing technology based on reverse transcription-polymerase chain reaction (RT-PCR) using an annealing control primer system was used. The selected candidate genes were validated by semi quantitative and real-time RT-PCR. Results: The transcription of TIMP-1, IFITM1, PAR3 and CCL1 was different between TIM-3 overexpressing cells and control cells. However, only CCL1 transcription was significantly different in cells transiently transfected with TIM3 expression vector compared with control cells. CCL1 transcription was increased in primary human $CD4^+$ T cells abundantly expressing TIM-3 but not in cells with low expression of TIM-3. Conclusion: CCL1 was identified as a differentially transcribed gene in TIM-3-expressing $CD4^+$ T cells.

Bone Healing Capacity of Demineralized Dentin Matrix Materials in a Mini-pig Cranium Defect

  • Kim, Jong-Yub;Kim, Kyung-Wook;Um, In-Woong;Kim, Young-Kyun;Lee, Jeong-Keun
    • Journal of Korean Dental Science
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: In this study the bone healing ability of autogenous tooth bone graft material as a substitute material was evaluated in a mini-pig cranial defect model through histologic examinations and osteonectin reverse transcription polymerase chain reaction (RT-PCR) quantitative analysis. Materials and Methods: A defect was generated in the cranium of mini-pigs and those without a defect were used as controls. In the experimental group, teeth extracted from the mini-pig were manufactured into autogenous tooth bone graft material and grafted to the defect. The mini-pigs were sacrificed at 4, 8, and 12 weeks to histologically evaluate bone healing ability and observe the osteonectin gene expression pattern with RT-PCR. Result: At 4 weeks, the inside of the bur hole showed fibrosis and there was no sign of bone formation in the control group. On the other hand, bone formation surrounding the tooth powder granule was observed at 4 weeks in the experimental group where the bur hole was filled with tooth powder. Osteonectin gene expression; there was nearly no osteonectin expression in the control group while active osteonectin expression was observed from 4 to 12 weeks in the experimental group. Conclusion: We believe this material will show better results when applied in a clinical setting.