• Title/Summary/Keyword: Quantitative reverse transcription-PCR

Search Result 183, Processing Time 0.031 seconds

Effect of Vinclozolin on the Onset of Puberty in Immature Female Rats (미성숙 암컷 흰쥐의 사춘기 개시에 미치는 Vinclozolin의 영향)

  • An, Na-Kyung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.245-251
    • /
    • 2007
  • Vinclozolin(VCZ), a systemic dicarboximide fungicide, has been used in the control of diseases caused by microorganism of some species in fruits, vegatables and ornamental plants. Although VCZ itself is a very weak antagonist for androgen receptor binding, both melabolites M1 and M2 are effective antagonists. The present study was undertaken to examine whether prepubertal exposure to VCZ affects on the onset of puberty and the associated reproductive parameters such as hormone receptor expressions in female rats. VCZ(10 mg/kg/day) was administered daily from postnatal day 21(PND 21) through the day when the first vaginal opening(V.O.) was observed. Gross anatomy and weight of reproductive tissues were compared to test the VCZ's effects on the cell proliferation. Furthermore, histological studies were performed to assess the structural alterations in the tissues. To determine the transcriptional changes in progesterone receptor(PR), total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). As a result, delayed V.O. was shown in the VCZ group(PND $34.00{\pm}1.22$) compared to the control group(PND $38.20{\pm}1.92$; p<0.01). VCZ treatment significantly decreased the wet weight of ovaries and uteri compared to the control group(p<0.01). Graafian follicles and corpora lutea were observed only in the ovaries from the control animals, while numerous primary, secondary follicles and small atretic follicles were observed in the ovaries from VCZ group. Similarly, hypotrophy of luminal and glandular uterine epithelium was found in the VCZ group. In the semi-quantitative RT-PCR studies, the transcriptional activity of PR in ovary(p<0.01) from VCZ group were significantly lower than those from the control group while in uterus were similar compared with the control group. The present studies demonstrated that the acute exposure to VCZ during the critical period of prepubertal stage could inactivate the reproductive system resulting delayed puberty in female rats.

  • PDF

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes (산달래 추출물의 3T3-L1 지방전구세포 분화 억제 효능)

  • Lee, Joo-Yeon;Jeong, Yeju;Kim, Jina;Kim, Choon Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.441-449
    • /
    • 2020
  • The aim of this study was to compare the biological activities of whole-plant (WAE), bulb (BAE), and leaf (LAE) extracts of Allium macrostemon. The antioxidant activities, total polyphenol contents, and anti-adipogenic activities of WAE and LAE were superior to those of BAE, whereas the biological effects of WAE and LAE were similar. Therefore, the effect of LAE on adipogenesis was further investigated. Treatment of preadipocytes with LAE at 100 g/mL resulted in the inhibition of intracellular lipid accumulation by 49.64%. Consistent with this result, quantitative reverse transcription-PCR showed that LAE treatment decreased the gene expressions of CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα and stearoyl-CoA desaturase 1 (SCD1). Thus, LAE attenuates the adipogenesis of preadipocytes by suppressing the expression of adipogenic and lipogenic genes. These results suggest that LAE can be potentially useful as a functional ingredient to prevent obesity in the food industry.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

Expression of $interferon$ $regulatory$ factor-1 in the mouse cumulus-oocyte complex is negatively related with oocyte maturation

  • Kim, Yun-Sun;Kim, Eun-Young;Moon, Ji-Sook;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.193-202
    • /
    • 2011
  • Objective: We found previously that $interferon$ $regulatory$ factor ($Irf$)-1 is a germinal vesicle (GV)-selective gene that highly expressed in GV as compared to metaphase II oocytes. To our knowledge, the function of $Irf-1$ in oocytes has yet to be examined. The present study was conducted to determine the relationship between retinoic acid (RA) and RA-mediated expression of $Irf-1$ and the mouse oocyte maturation. Methods: Immature cumulus-oocyte-complexes (COCs) were collected from 17-day-old female mice and cultured $in$ $vitro$ for 16 hours in the presence of varying concentrations of RA (0-10 ${\mu}M$). Rate of oocyte maturation and activation was measured. Gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and cytokine secretion in the medium was measured by Bio-Plex analysis. Apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: The rates of oocyte maturation to metaphase II and oocyte activation increased significantly with RA treatment (10 nM-1 ${\mu}M$). With 100 nM RA treatment, lowest level of $Irf-1$ mRNA and cumulus cell's apoptosis was found. Among 23 cytokines measured by Bio-Plex system, the substantial changes in secretion of tumor necrosis factor-${\alpha}$, macrophage inflammatory protein-$1{\beta}$, eotaxin and interleukin-12 (p40) from COCs in response to RA were detected. Conclusion: We concluded that the maturation of oocytes and $Irf-1$ expression are negatively correlated, and RA enhances the developmental competence of mouse immature oocytes $in$ $vitro$ by suppressing apoptosis of cumulus cells. Using a mouse model, results of the present study provide insights into improved culture conditions for $in$ $vitro$ oocyte maturation and relevant cytokine production and secretion in assisted reproductive technology.

Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae (알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응)

  • Park, Ju-Yong;Hong, Chun-Sang;Han, Ji-Hye;Kang, Hyun-Woo;Chung, Bong-Woo;Choi, Gi-Wook;Min, Ji-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.105-108
    • /
    • 2011
  • The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

Effect of Di(2-ethyl hexyl)phthalate(DEHP) on the Onset of Puberty in Female Rat (암컷 흰쥐의 사춘기 개시에 미치는 di(2-ethyl hexyl)phthalate(DEHP)의 효과)

  • Lee, Kyeung-Yeup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Phthalates such as di(2-ethyl hexyl)phthalate(DEHP) are industrial chemicals with wide-ranging human exposures because of their use in plastics and other common consumer products. Consequently, their adverse effects as endocrine disruptor in the reproductive physiology of both laboratory rodents and human have been studied extensively. The present study was undertaken to examine whether prepubertal exposure to DEHP affects on the onset of puberty and the associated reproductive parameters such as hormone receptor expressions in female rats. DEHP(100mg/kg/day) was administered daily from postnatal day 25(PND 25) through the day when the first vaginal opening(VO) was observed, and the animals were sacrificed on the next day. Gross anatomy and weight of reproductive tissues were compared to test the DEHP's effects on the cell proliferation. Furthermore, histological studies were performed to assess the structural alterations in the tissues. Specific radioimmunoassay was carried out to measure serum LH levels. To determine the transcriptional changes in progesterone receptor(PR), total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). As a result, delayed VO was shown in the DEHP group(PND $37.3{\pm}0.7$) compared to the control group(PND $35.3{\pm}0.7$; p<0.05). DEHP treatment significantly decreased the wet weight of ovaries and uteri compared to the control group(p<0.05). Interestingly, elevation of serum LH levels was shown in the DEHP group(p<0.05). Graafian follicles and corpora lutea were observed only in the ovaries from the control animals. Numerous primary, secondary follicles and small atretic follicles were observed in the ovaries from DEHP-treated animals. Similarly, hypotrophy of luminal and glandular uterine epithelium was found in the DEHP-treated group. These effects were probably due to the inhibitory effects of DEHP on the synthesis and secretion of estrogen from granulosa cells. In the semiquantitative RT-PCR studies, the transcriptional activities of PR in both ovary(p<0.05) and uterus(p<0.01) from DEHP-treated animals were significantly lower than those from the control animals. The present studies demonstrated that the acute exposure to DEHP during the critical period of prepubertal stage could inactivate the reproductive system resulting delayed puberty in female rats.

  • PDF

Effects of Endocrine Disruptors on the Expression of Estrogen Receptors in Ovary and Uterus from Immature Rats (내분비계 장애물질이 미성숙한 흰쥐의 난소와 자궁에서의 에스트로겐 수용체 발현에 미치는 효과)

  • Lee, Kyeung-Yeup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2006
  • Although some phytoes rogens might have beneficiary rather than adverse effects, most endocrine disrupting compounds(EDCs) are considered to be harmful to human and wildlife health through interfering the endocrine system. Previously we found that prepubertal exposure to genistein(GS), a well-known isoflavone phytoestrogen, could activate the reproductive system of immature female rats resulting precocious puberty. Interestingly, di(2-ethyl hexyl) phthalate(DEHP) exposure brought inverse result, a delayed puberty, in the same experimental regimen. In this study, we examined whether prepubertal exposure to GS or DEHP affect the gene expressions of estrogen receptors($ER\;{\alpha}$ and $ER\;{\beta}$) and LH receptor(LHR) which represent the maturational status of ovary and uterus in immature rats. GS (100 mg/kg/day) was administered daily from postnatal day 25 to the day when the first vaginal opening(VO) was observed, and the animals were sacrificed on the next day(day 32). Similarly, DEHP(l00 mg/kg/day) was administered daily from postnatal day 25 through the day when the first V.O. in control group was observed, and the animals were sacrificed on the next day(day 36). To determine the transcriptional changes in the hormone receptors, total RNAs were extracted from ovary and uterus and were applied to semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). In the GS group, the transcriptional activities of $ER\;{\alpha}$, $ER\;{\beta}$ and LHR in uterus and LHR in ovary were significantly increased when compared to those of control group. In the DEHP group, the transcriptional activities of all the hormone receptors measured were significantly lowered when compared to those of control group. These alteration of the reproductive hormone receptor expressions in ovary and uterus might be represent the phenotypic aspects(secondary sexual characteristics) such as tissue weights and reproductive hormone levels during perinatal period in immature female rats.

  • PDF