• Title/Summary/Keyword: Quantitative methods

Search Result 4,433, Processing Time 0.035 seconds

Tumor Margin Infiltration in Soft Tissue Sarcomas: Prediction Using 3T MRI Texture Analysis (연조직 육종의 종양 가장자리 침윤: 3T 자기공명영상 텍스처 분석을 통한 예측)

  • Minji Kim;Won-Hee Jee;Youngjun Lee;Ji Hyun Hong;Chan Kwon Jung;Yang-Guk Chung;So-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.112-126
    • /
    • 2022
  • Purpose To determine the value of 3 Tesla (T) MRI texture analysis for predicting tumor margin infiltration in soft tissue sarcomas. Materials and Methods Thirty-one patients who underwent 3T MRI and had a pathologically confirmed diagnosis of soft tissue sarcoma were included in this study. Margin infiltration on pathology was used as the gold standard. Texture analysis of soft tissue sarcomas was performed on axial T1-weighted images (WI) and T2WI, fat-suppressed contrast-enhanced (CE) T1WI, diffusion-weighted images (DWI) with b-value of 800 s/mm2, and apparent diffusion coefficient (ADC) was mapped. Quantitative parameters were compared between sarcomas with infiltrative margins and those with circumscribed margins. Results Among the 31 patients with soft tissue sarcomas, 23 showed tumor margin infiltration on pathology. There were significant differences in kurtosis with the spatial scaling factor (SSF) of 0 and 6 on T1WI, kurtosis (SSF, 0) on CE-T1WI, skewness (SSF, 0) on DWI, and skewness (SSF, 2, 4) on ADC between sarcomas with infiltrative margins and those with circumscribed margins (p ≤ 0.046). The area under the receiver operating characteristic curve based on MR texture features for identification of infiltrative tumor margins was 0.951 (p < 0.001). Conclusion MR texture analysis is reliable and accurate for the prediction of infiltrative margins of soft tissue sarcomas.

The Usefulness of 18F-FDG PET to Differentiate Subtypes of Dementia: The Systematic Review and Meta-Analysis

  • Seunghee Na;Dong Woo Kang;Geon Ha Kim;Ko Woon Kim;Yeshin Kim;Hee-Jin Kim;Kee Hyung Park;Young Ho Park;Gihwan Byeon;Jeewon Suh;Joon Hyun Shin;YongSoo Shim;YoungSoon Yang;Yoo Hyun Um;Seong-il Oh;Sheng-Min Wang;Bora Yoon;Hai-Jeon Yoon;Sun Min Lee;Juyoun Lee;Jin San Lee;Hak Young Rhee;Jae-Sung Lim;Young Hee Jung;Juhee Chin;Yun Jeong Hong;Hyemin Jang;Hongyoon Choi;Miyoung Choi;Jae-Won Jang;Korean Dementia Association
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.54-66
    • /
    • 2024
  • Background and Purpose: Dementia subtypes, including Alzheimer's dementia (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD), pose diagnostic challenges. This review examines the effectiveness of 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) in differentiating these subtypes for precise treatment and management. Methods: A systematic review following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was conducted using databases like PubMed and Embase to identify studies on the diagnostic utility of 18F-FDG PET in dementia. The search included studies up to November 16, 2022, focusing on peer-reviewed journals and applying the goldstandard clinical diagnosis for dementia subtypes. Results: From 12,815 articles, 14 were selected for final analysis. For AD versus FTD, the sensitivity was 0.96 (95% confidence interval [CI], 0.88-0.98) and specificity was 0.84 (95% CI, 0.70-0.92). In the case of AD versus DLB, 18F-FDG PET showed a sensitivity of 0.93 (95% CI 0.88-0.98) and specificity of 0.92 (95% CI, 0.70-0.92). Lastly, when differentiating AD from non-AD dementias, the sensitivity was 0.86 (95% CI, 0.80-0.91) and the specificity was 0.88 (95% CI, 0.80-0.91). The studies mostly used case-control designs with visual and quantitative assessments. Conclusions: 18F-FDG PET exhibits high sensitivity and specificity in differentiating dementia subtypes, particularly AD, FTD, and DLB. This method, while not a standalone diagnostic tool, significantly enhances diagnostic accuracy in uncertain cases, complementing clinical assessments and structural imaging.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

MR T2 Map Technique: How to Assess Changes in Cartilage of Patients with Osteoarthritis of the Knee (MR T2 Map 기법을 이용한 슬관절염 환자의 연골 변화 평가)

  • Cho, Jae-Hwan;Park, Cheol-Soo;Lee, Sun-Yeob;Kim, Bo-Hui
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.298-307
    • /
    • 2009
  • By using the MR T2 map technique, this study intends, first, to measure the change of T2 values of cartilage between healthy people and patients with osteoarthritis and, second, to assess the form and the damage of cartilage in the knee-joint, through which this study would consider the utility of the T2 map technique. Thirty healthy people were selected based on their clinical history and current status and another thirty patients with osteoarthritis of the knee who were screened by simple X-ray from November 2007 to December 2008 were selected. Their T2 Spin Echo (SE hereafter) images for the cartilage of the knee joint were collected by using the T2 SE sequence, one of the multi-echo methods (TR: 1,000 ms; TE values: 6.5, 13, 19.5, 26, 32.5. 40, 45.5, 52). Based on these images, the changes in the signal intensity (SI hereafter) for each section of the cartilage of the knee joint were measured, which yielded average values of T2 through the Origin 7.0 Professional (Northampton, MA 01060 USA). With these T2s, the independent samples T-test was performed by SPSS Window version 12.0 to run the quantitative analysis and to test the statistical significance between the healthy group and the patient group. Closely looking at T2 values for each anterior and lateral articular cartilage of the sagittal plane and the coronal plane, in the sagittal plane, the average T2 of the femoral cartilage in the patient group with arthritis of the knee ($42.22{\pm}2.91$) was higher than the average T2 of the healthy group ($36.26{\pm}5.01$). Also, the average T2 of the tibial cartilage in the patient group ($43.83{\pm}1.43$) was higher than the average T2 in the healthy group ($36.45{\pm}3.15$). In the case of the coronal plane, the average T2 of the medial femoral cartilage in the patient group ($45.65{\pm}7.10$) was higher than the healthy group ($36.49{\pm}8.41$) and so did the average T2 of the anterior tibial cartilage (i.e., $44.46{\pm}3.44$ for the patient group vs. $37.61{\pm}1.97$ for the healthy group). As for the lateral femoral cartilage in the coronal plane, the patient group displayed the higher T2 ($43.41{\pm}4.99$) than the healthy group did ($37.64{\pm}4.02$) and this tendency was similar in the lateral tibial cartilage (i.e., $43.78{\pm}8.08$ for the patient group vs. $36.62{\pm}7.81$ for the healthy group). Along with the morphological MR imaging technique previously used, the T2 map technique seems to help patients with cartilage problems, in particular, those with the arthritis of the knee for early diagnosis by quantitatively analyzing the structural and functional changes of the cartilage.

  • PDF

The Evaluation of Attenuation Difference and SUV According to Arm Position in Whole Body PET/CT (전신 PET/CT 검사에서 팔의 위치에 따른 감약 정도와 SUV 변화 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Purpose: For better PET imaging with accuracy the transmission scanning is inevitably required for attenuation correction. The attenuation is affected by condition of acquisition and patient position, consequently quantitative accuracy may be decreased in emission scan imaging. In this paper, the present study aims at providing the measurement for attenuation varying with the positions of the patient's arm in whole body PET/CT, further performing the comparative analysis over its SUV changes. Materials and Methods: NEMA 1994 PET phantom was filled with $^{18}F$-FDG and the concentration ratio of insert cylinder and background water fit to 4:1. Phantom images were acquired through emission scanning for 4min after conducting transmission scanning by using CT. In an attempt to acquire image at the state that the arm of the patient was positioned at the lower of ahead, image was acquired in away that two pieces of Teflon inserts were used additionally by fixing phantoms at both sides of phantom. The acquired imaged at a were reconstructed by applying the iterative reconstruction method (iteration: 2, subset: 28) as well as attenuation correction using the CT, and then VOI was drawn on each image plane so as to measure CT number and SUV and comparatively analyze axial uniformity (A.U=Standard deviation/Average SUV) of PET images. Results: It was found from the above phantom test that, when comparing two cases of whether Teflon insert was fixed or removed, the CT number of cylinder increased from -5.76 HU to 0 HU, while SUV decreased from 24.64 to 24.29 and A.U from 0.064 to 0.052. And the CT number of background water was identified to increase from -6.14 HU to -0.43 HU, whereas SUV decreased from 6.3 to 5.6 and A.U also decreased from 0.12 to 0.10. In addition, as for the patient image, CT number was verified to increase from 53.09 HU to 58.31 HU and SUV decreased from 24.96 to 21.81 when the patient's arm was positioned over the head rather than when it was lowered. Conclusion: When arms up protocol was applied, the SUV of phantom and patient image was decreased by 1.4% and 9.2% respectively. With the present study it was concluded that in case of PET/CT scanning against the whole body of a patient the position of patient's arm was not so much significant. Especially, the scanning under the condition that the arm is raised over to the head gives rise to more probability that the patient is likely to move due to long scanning time that causes the increase of uptake of $^{18}F$-FDG of brown fat at the shoulder part together with increased pain imposing to the shoulder and discomfort to a patient. As regarding consideration all of such factors, it could be rationally drawn that PET/CT scanning could be made with the arm of the subject lowered.

  • PDF

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

Evaluation of Standardized Uptake Value and Metabolic Tumor Volume between Reconstructed data and Re-sliced data in PET Study (PET 검사 시 Reconstructed data와 Re-sliced data의 표준섭취계수와 Metabolic Tumor Volume의 비교 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.3-8
    • /
    • 2016
  • Purpose SUV is one of the parameters that assist diagnosis in origin, metastasis and staging of cancer. Specially, it is important to compare SUV before and after chemo or radiation therapy to find out effectiveness of treatment. Storing PET data which has no quantitative change is needed for SUV comparison. However, there is a possibility to loss the data in external hard drive or MINIpacs that are managed by department of nuclear medicine. The aim of this study is to evaluate SUV and metabolic tumor volume (MTV) among reconstructed data (R-D) in workstation, R-D and re-sliced data (S-D) in PACS. Materials and Methods Data of 20 patients (aged $60.5{\pm}8.3y$) underwent $^{18}F-FDG$ PET (Biograph truepoint 40, mCT 40, mCT 64, mMR, Siemens) study were analysed. $SUV_{max}$, $SUV_{peak}$ and MTV were measured in liver, aorta and tumor after sending R-D in workstation, R-D and S-D in PACS to syngo.via software. Results R-D of workstation and PACS showed the same value as mean $SUV_{max}$ in liver, aorta and tumor were $2.95{\pm}0.59$, $2.35{\pm}0.61$, $10.36{\pm}6.15$ and $SUV_{peak}$ were $2.70{\pm}0.51$, $2.07{\pm}0.43$, $7.67{\pm}3.73$(p>0.05) respectively. Mean $SUV_{max}$ of S-D in PACS were decreased by 5.18%, 7.22%, 12.11% and $SUV_{peak}$ 2.61%, 3.63%, 10.07%(p<0.05). Correlation between R-D and S-D were $SUV_{max}$ 0.99, 0.96, 0.99 and $SUV_{peak}$ 0.99, 0.99, 0.99. And 2SD in balnd-altman analysis were $SUV_{max}$ 0.125, 0.290, 1.864 and $SUV_{peak}$ 0.053, 0.103, 0.826. MTV of R-D in workstation and PACS show the same value as $14.21{\pm}12.72cm^3$(p>0.05). MTV in PACS was decreased by 0.12% compared to R-D(p>0.05). Correlation and 2SD between R-D and S-D were 0.99 and 2.243. Conclusion $SUV_{max}$, $SUV_{peak}$, MTV showed the same value in both of R-D in workstation and PACS. However, there was statistically difference in $SUV_{max}$, $SUV_{peak}$ of S-D compare to R-D despite of high correlation. It is possible to analyse reliable pre and post SUV if storing R-D in main hospital PACS system.

  • PDF

Quantitative Analysis of Small Intestinal Mucosa Using Morphometry in Cow's Milk-Sensitive Enteropathy (우유 과민성 장병증(cow's milk-sensitive enteropathy)에서 소장 생검조직의 형태학적 계측을 이용한 정량적 분석)

  • Hwang, Jin-Bok;Kim, Yong-Jin
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • Purpose: To make objective standards of small intestinal mucosal changes in cow's milk-sensitive enteropathy (CMSE) we analyzed histological changes of endoscopic duodenal mucosa biopsy specimens from normal children and patients of CMSE. Methods: We review the medical records of patients who had been admitted and diagnosed as CMSE by means of gastrofiberscopic duodenal mucosal biopsy following cow's milk challenge and withdrawal. Thirteen babies with CMSE, ranging from 14 days to 56 days of age, were studied. Five non-CMSE patients were used as control, ranging from 22 days to 72 days of age. The morphometric parameters under study were villous height, crypt zone depth, ratio of villous height to crypt zone depth, total mucosal thickness and length of surface epithelium by using H & E stained specimens under the drawing apparatus attached microscope. In addition, the numbers of lymphocytes in the epithelium and eosinophil cells in the lamina propria and epithelium were measured. Results: In the duodenal mucosal biopsy specimens in CMSE we found partial and subtotal villous atrophy with an increased number of interepithelial lymphocytes. The mean villous height($135{\pm}59\;{\mu}m$), ratio of villous height to crypt zone depth ($0.46{\pm}0.28$), total mucosal thickness ($499{\pm}56\;{\mu}m$), length of surface epithelium of small intestinal mucosa ($889{\pm}231\;{\mu}m$) in CMSE was significantly decreased compared with the control (p<0.05). The mean crypt zone depth ($311{\pm}65\;{\mu}m$) was significantly greater than the control ($188{\pm}24\;{\mu}m$)(p<0.05). Infiltration of interepithelial lymphocytes ($34.1{\pm}10.5$) were significantly greater than the control ($13.6{\pm}3.6$)(p<0.05). The number of eosinophil cells in both lamina propria and epithelium was no significant differences between groups (p>0.05). The small intestinal mucosa in treated CMSE showed much improved enteropathy of villous height, crypt zone depth, interepithelial lymphocytes compared with the control as well as untreated CMSE. Conclusion: Quantitation of mucosal dimensions confirmed the presence of CMSE. It seems to be a limitation in the capacity of crypt cells to compensate for the loss of villous epithelium in CMSE. Specimens obtained by gastrofiberscopic duodenal mucosal biopsy were suitable for morphometric diagnosis of CMSE. Improvement of CMSE also can be confirmed histologically after the therapy of protein hydrolysate.

  • PDF

Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient (비소세포성 폐암 환자의 방사선 치료 시 제한 호흡 주기의 유용성 평가)

  • Park, So-Yeon;Ahn, Jong-Ho;Suh, Jung-Min;Kim, Yung-Il;Kim, Jin-Man;Choi, Byung-Ki;Pyo, Hong-Ryul;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2012
  • Purpose: It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. Materials and Methods: After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. Results: As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional direction movement of the tumor in comparison to the 'free respiratory period' in the case of the observer 1, while there reduction rate was 41.10% in the case of the observer 2. The results of measurement and comparison of the volumes, GTV and ITV, there was reduction rate of $14.96{\pm}9.44%$ for observer 1 and $19.86{\pm}10.62%$ for observer 2 in the case of GTV, while there was reduction rate of $8.91{\pm}5.91%$ for observer 1 and $15.52{\pm}9.01%$ for observer 2 in the case of ITV. The results of analysis and comparison of MDTNL and NTCP illustrated the reduction rate of MDTNL $3.98{\pm}5.62%$ for observer 1 and $7.62{\pm}10.29%$ for observer 2 in the case of MDTNL, while there was reduction rate of $21.70{\pm}28.27%$ for observer 1 and $37.83{\pm}49.93%$ for observer 2 in the case of NTCP. In addition, the results of analysis of correlation between the resultant values of the 2 observers, while there was significant difference between the observers for the 'free respiratory period', there was no significantly different reduction rates between the observers for 'restricted respiratory period. Conclusion: It was possible to verify the usefulness and appropriateness of 'restricted respiratory period' at the time of respiration controlled radiotherapy on non-small cell lung cancer patient as the treatment plan that applied 'restricted respiratory period' illustrated relative reduction in the evaluation factors in comparison to the 'free respiratory period.

  • PDF

Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001 (NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.