• Title/Summary/Keyword: Quantitative Trait Loci (QTL) Mapping

Search Result 87, Processing Time 0.031 seconds

Mapping QTLs for Agronomic Traits Using an Introgressin Line Population from a Cross between Ilpumbyeo and Moroberekan in Rice (일품벼/모로베레칸 이입계통을 이용한 농업형질 관련 QTL 분석)

  • Ju, Hong-Guang;Kim, Dong-Min;Kang, Ju-Won;Kim, Myung-Ki;Kim, Yeon-Gyu;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.414-421
    • /
    • 2008
  • We conducted a QTL analysis of agronomic traits using 117 $BC_3F_5$ and $BC_3F_6$ lines developed from a cross between Ilpumbyeo and Moroberekan. Genotypes of 117 $BC_3F_5$ lines were determined using 134 simple sequence repeat (SSR) markers. A total of 832 Moroberekan chromosome segments with 410 homozygous and 422 heterozygous, respectively, were detected, and the genetic distance of introgression segments ranged from 0.5 cm to 112.1 cm. A linkage map constructed using 134 SSR markers was employed to characterize quantitative trait loci (QTL). The 117 $BC_3F_5$ and $BC_3F_6$ lines were evaluated for seven agronomic traits at two locations in 2006 and 2007 and at one location in 2007. A total of 26 QTLs were identified for seven traits including days to heading, and the phenotypic variance explained by each QTL ranged from 9.2% to 24.2%. Moroberekan alleles contributed positive effects in the Ilpumbyeo background at eleven QTL loci including panicle length and spikelets per panicle. Five QTLs, two for days to heading and one each for culm length, panicle length and spikelets per panicle were consistently detected in every occasions indicating that these QTLs are stable. Among them, two QTLs, spp6 for spikelets per panicle and pl6 for paniclel length were localized in the similar region. Increase in spikelets per panicle at this locus might be due to the increase in panicle length, because both traits were associated with increase in spikelets per panicle and panicle length due to the presence of the Moroberekan allele. These Moroberekan QTLs might be useful in breeding programs to develop high-yielding cultivars.

Genetic Insights into Domestication Loci Associated with Awn Development in Rice

  • Ngoc Ha Luong;Sangshetty G. Balkunde;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Hyun-Jung Kim;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.33-33
    • /
    • 2022
  • Rice (Oryza sativa L.) is a widely studied domesticated model plant. Seed awning is an unfavorable trait during rice harvesting and processing. Hence, awn was one of the target characters selected during domestication. However, the genetic mechanisms underlying awn development in rice are not well understood. In this study, we analyzed the genes for awn development using a mapping population derived from a cross between the Korean indica cultivar 'Milyang23' and NIL4/9 (derived from a cross between 'Hwaseong' and O. minuta). Two quantitative trait loci (QTLs), qAwn4 and qAwn9 were mapped on chromosome 4 and 9, respectively, increased awn length in an additive manner. Through comparative sequencing analyses parental lines, LABA1 was determined as the causal gene underlying qAwn4. qAwn9 was mapped to a 199-kb physical region between markers RM24663 and RM24679. Within this interval, 27 annotated genes were identified, and five genes, including a basic leucine zipper transcription factor 76 (OsbZIP76), were considered candidate genes for qAwn9 based on their functional annotations and sequence variations. Haplotype analysis using the candidate genes revealed tropical japonica specific sequence variants in the qAwn9 region, which partly explains the non-detection of qAwn9 in previous studies that used progenies from interspecific crosses. This provides further evidence that OsbZIP76 is possibly a causal gene for qAwn9. The O. minuta qAwn9 allele was identified as a major QTL associated with awn development in rice, providing an important molecular target for basic genetic research and domestication studies. Our results lay the foundation for further cloning of the awn gene underlying qAwn9.

  • PDF

QTL analysis of for micronutrient content in rice grain

  • Lee, Hyun-Sook;Shim, Kyu-Chan;Jeon, Yun-A;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.144-144
    • /
    • 2017
  • Micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) have important roles for development and growth in plants but it also have roles in animals and humans. In previous studies, a Korean weedy rice, KH2J was selected to have tolerance to heavy metal, lead (Pb) compared with a cultivar, Milyang23. To identify QTLs for micronutrients concentration in grain, an F2 population (120 plants) were developed from a cross between KH2J and an indica rice cultivar, Milyang23. To measure the concentration of eight ions, Zn, Fe, Mn, Pb, calcium (Ca), copper (Cu), cadmium (Cd) and arsenic (As), grains were collected and digested with 65% nitric acid, and the ion contents were measured using inductively coupled plasma mass spectrometry. A total 27 putative quantitative trait loci (QTLs) were detected on 12 chromosomes by single point analysis and 22 putative QTLs were detected by composite interval mapping. The co-locations of QTL for Zn, Fe and Mn were observed on chromosome 5. The QTLs for Cd, Cu and Zn were co-localized on chromosome 10, and QTLs for Zn, As and Mn was on chromosome 12. The Zn concentration in F2 generation showed significant correlation with concentrations of As (r = -0.4), Cu (r = 0.5) and Fe (r = 0.2) (P < 0.01). Also, the Ca concentration was significantly related with Mn and Fe concentrations (P < 0.01). Fine mapping of these QTLs is underway to analyze their functional relationship.

  • PDF

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Genetic Mapping of QTLs that Control Grain Characteristics in Rice (Oryza sativa L.) (벼의 낱알 특성에 관여하는 양적형질유전자좌 분석)

  • Wacera, Home Regina;Safitri, Fika Ayu;Lee, Hyun-Suk;Yun, Byung-Wook;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.925-931
    • /
    • 2015
  • We performed a molecular marker-based analysis of quantitative trait loci (QTLs) for traits that determine the quality of the appearance of grains, using 120 doubled-haploid (DH) lines developed by another culture from the F1 cross between ‘Cheongcheong’ (Oryza sativa L. ssp. Indica) and ‘Nagdong’ (Oryza sativa L. ssp. Japonica). The traits studied included length, width, and thickness of the grains, as well as length-to-width ratio and 1,000-grain weight. The objective of this study was to determine the genetic control of these traits in order to formulate a strategy for improving the appearance of this hybrid. Within the DH population, five traits exhibited wide variation, with mean values occurring within the range of the two parents. Three QTLs were identified for grain length on chromosomes 2, 5, and 7. Three QTLs were mapped for grain width on chromosome 2: qGW2-1, qGW2-2, and qGW2-3. Six chromosomes were identified for the grain length-to-width ratio; four of these were on chromosome 2, whereas the other two were on chromosomes 7 and 12. One QTL influencing 1,000-grain weight was identified and located on chromosome 8. The results presented in the present study should facilitate rice-breeding, especially for improved hybrid-rice quality.

Application of genomics into rice breeding

  • Ando, Ikuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.13-13
    • /
    • 2017
  • By the progress of genome sequencing, infrastructures for marker-assisted breeding (MAB) of rice came to be established. Fine mapping and gene isolation have been conducted using the breeding materials derived from natural variations and artificial mutants. Such genetic analysis by the genome-wide dense markers provided us the knowledge about the many genes controlling important traits. We identified several genes or quantitative trait loci (QTL) for heading date, blast resistance, eating quality, high-temperature stress tolerance, and so on. NILs of each gene controlling heading date contribute to elongate the rice harvest period. Determination of precise gene location of blast resistance gene pi21, allowed us to overcome linkage drag, co-introduction of undesirable eating quality. We could also breed the first practical rice cultivar in Japan with a brown planthopper resistance gene bph11 in the genetic back-ground of an elite cultivar. Discovery of major and minor QTLs for good eating quality allowed us to fine-tune of eating quality according to the rice planting area or usage of rice grain. Many rice cultivars have bred efficiently by MAB for several traits, or by marker-assisted backcross breeding through chromosome segment substitution lines (CSSLs) using genetically diverse accessions. We are also systematically supporting the crop breeding of other sectors by MAB or by providing resources such as CSSLs. It is possible to pyramid many genes for important traits by using MAB, but is still difficult to improve the yielding ability. We are performing a Genomic Selection (GS) for improvement of rice biomass and grain yield. We are also trying to apply the genome editing technology for high yield rice breeding.

  • PDF

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Marker Assisted Selection-Applications and Evaluation for Commercial Poultry Breeding

  • Sodhi, Simrinder Singh;Jeong, Dong Kee;Sharma, Neelesh;Lee, Jun Heon;Kim, Jeong Hyun;Kim, Sung Hoon;Kim, Sung Woo;Oh, Sung Jong
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.223-234
    • /
    • 2013
  • Poultry industry is abounding day by day as it engrosses less cost of investment per bird as compared to large animals. Poultry have the most copious genomic tool box amongst domestic animals for the detection of quantitative trait loci (QTL) and marker assisted selection (MAS). Use of multiple markers and least square techniques for mapping of QTL affecting quality and production traits in poultry is in vogue. Examples of genetic tests that are available to or used in industry programs are documented and classified into causative mutations (direct markers), linked markers in population-wide linkage disequilibrium (LD) with the QTL (LD markers), and linked markers in population wide equilibrium with the QTL (LE markers). Development of genome-wide SNP assays, role of 42 K, 60 K (Illumina) and 600 K (Affymetrix$^{(R)}$ Axim$^{(R)}$) SNP chip with next generation sequencing for identification of single nucleotide polymorphism (SNP) has been documented. Hybridization based, PCR based, DNA chip and sequencing based are the major segments of DNA markers which help in conducting of MAS in poultry. Economic index-marker assisted selection (EI-MAS) provides platform for simultaneous selection for production traits while giving due weightage to their marginal economic values by calculating predicted breeding value, using information on DNA markers which are normally associated with relevant QTL. Understanding of linkage equilibrium, linkage dis-equilibrium, relation between the markers and gene of interest are quite important for success of MAS. This kind of selection is the most useful tool in enhancing disease resistance by identifying candidate genes to improve the immune response. The application of marker assisted selection in selection procedures would help in improvement of economic traits in poultry.

Molecular Mapping of the Blast Resistance Loci in the Durable Resistance Japonica Rice Cultivar, Palgong (도열병 내구 저항성 자포니카 벼품종 팔공의 저항성 관련 유전좌위 분석)

  • Baek, Man-Kee;Cho, Young-Chan;Park, Hyun-Su;Jeong, Jong-Min;Kim, Woo-Jae;Nam, Jeong-Kwon;Kim, Choon-Song;Kwon, Soon-Wook;Kim, Bo-Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • Rice blast caused by the fungus Magnaporthe grisea (anamorphic: Pyricularia oryzae) is an important disease in rice and development of resistant varieties to blast is one of the most important goals in rice breeding programs. A japonica rice variety, Palgong, has shown resistance to the Korean blast pathogen since it was developed in 1996. Nine blast resistance quantitative trait loci (QTLs) in Palgong alleles were identified on chromosomes 2, 4, 7, and 11. Four QTLs of qBn2.3, qBn4.2, qBn11.1, and qBn11.2 explained 28-56.7% of total phenotypic variation, while five QTLs of qBn2.2, qBn2.4, qBn4.1, qBn7.1, and qBn7.2 explained 9.7-18.8%. In a previous study, one to four resistance genes were located on the loci qBn2.2, qBn2.3, qBn4.2, qBn11.1, and qBn11.2, however, resistance genes were not located on the loci qBn2.4, qBn4.1, and qBn7.1. A major QTL, qBn11.2, explaining 56.7% of total phenotypic variation was related to the durable resistance of Palgong. Additionally, rice stripe virus resistance of Palgong was assumed to be based on the Stvb-i gene, which is located on a major QTL qBn11.2.

An Integrated Genomic Resource Based on Korean Cattle (Hanwoo) Transcripts

  • Lim, Da-Jeong;Cho, Yong-Min;Lee, Seung-Hwan;Sung, Sam-Sun;Nam, Jung-Rye;Yoon, Du-Hak;Shin, Youn-Hee;Park, Hye-Sun;Kim, Hee-Bal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1399-1404
    • /
    • 2010
  • We have created a Bovine Genome Database, an integrated genomic resource for Bos taurus, by merging bovine data from various databases and our own data. We produced 55,213 Korean cattle (Hanwoo) ESTs from cDNA libraries from three tissues. We concentrated on genomic information based on Hanwoo transcripts and provided user-friendly search interfaces within the Bovine Genome Database. The genome browser supported alignment results for the various types of data: Hanwoo EST, consensus sequence, human gene, and predicted bovine genes. The database also provides transcript data information, gene annotation, genomic location, sequence and tissue distribution. Users can also explore bovine disease genes based on comparative mapping of homologous genes and can conduct searches centered on genes within user-selected quantitative trait loci (QTL) regions. The Bovine Genome Database can be accessed at http://bgd.nabc.go.kr.