• 제목/요약/키워드: Quantitative PCR (qPCR)

검색결과 380건 처리시간 0.031초

Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters

  • Lee, Sung Yeon;Jeong, Hae Jin;Ok, Jin Hee;Kang, Hee Chang;You, Ji Hyun
    • ALGAE
    • /
    • 제35권3호
    • /
    • pp.225-236
    • /
    • 2020
  • Gymnodinium smaydae is a newly described mixotrophic dinoflagellate that feeds on only Heterocapsa spp. and Scrippsiella acuminata among 19 tested algal prey. It is one of the fastest growing dinoflagellates when feeding, but does not grow well without prey. To investigate its spatial-temporal distributions in Korean waters, we quantified its abundance in water samples that were seasonally collected from 28 stations along the Korean Peninsula from April 2015 to October 2018, using quantitative real-time polymerase chain reactions. This dinoflagellate had a wide distribution, as reflected by the detection of G. smaydae cells at 23 of the sampling stations. However, this distribution had a strong seasonality; it was detected at 21 stations in the summer and only one station in winter. The abundance of G. smaydae was significantly and positively correlated with chlorophyll a concentration as well as with water temperature. However, there were no significant correlations between the abundance of G. smaydae and salinity, concentrations of nutrients, or dissolved oxygen concentration. During the study period, G. smaydae was present when water temperatures were 7.6-28.0℃, salinities were 9.6-34.1, concentrations of NO3 were not detectable-106.0 μM, and concentrations of PO4 were not detectable-3.4 μM. The highest abundance of G. smaydae was 18.5 cells mL-1 in the coastal waters of Jinhae in July 2017 when the chlorophyll a concentration was 127 mg m-3 and water temperature was 23.8℃. Therefore, the spatial-temporal distribution of G. smaydae in Korean coastal waters may be affected by chlorophyll a concentration and water temperature.

IL-6-miR-210 Suppresses Regulatory T Cell Function and Promotes Atrial Fibrosis by Targeting Foxp3

  • Chen, YingWei;Chang, GuoDong;Chen, XiaoJie;Li, YunPeng;Li, HaiYu;Cheng, Dong;Tang, Yi;Sang, HaiQiang
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.438-447
    • /
    • 2020
  • The aim of this study was to explore the role of IL-6-miR-210 in the regulation of Tregs function and atrial fibrosis in atrial fibrillation (AF). The levels of interleukin (IL)-6 and IL-10 in AF patients were detected by using ELISA. Proportions of Treg cells were detected by fluorescence activated cell sorting analysis in AF patients. The expression of Foxp3, α-SMA, collagen I and collagen III were determined by western blot. The atrial mechanocytes were authenticated by vimentin immunostaining. The expression of miR-210 was performed by quantitative real-time polymerase chain reaction (qRT-PCR). TargetScan was used to predict potential targets of miR-210. The cardiomyocyte transverse sections in AF model group were observed by H&E staining. The myocardial filaments were observed by masson staining. The level of IL-6 was highly increased while the level of IL-10 (Tregs) was significantly decreased in AF patients as compared to normal control subjects, and IL-6 suppressed Tregs function and promoted the expression of α-SMA, collagen I and collagen III. Furthermore, miR-210 regulated Tregs function by targeting Foxp3, and IL-6 promoted expression of miR-210 via regulating hypoxia inducible factor-1α (HIF-1α). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3.

Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters

  • Lee, Sung Yeon;Jeong, Hae Jin;You, Ji Hyun;Kim, So Jin
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.21-35
    • /
    • 2018
  • The phototrophic dinoflagellate genus Scrippsiella is known to have a worldwide distribution. Here, we report for the first time, the occurrence of Scrippsiella lachrymosa in Korean waters. Unlike the other stains of S. lachrymosa whose cultures had been established from cysts in the sediments, the clonal culture of the Korean strain of S. lachrymosa was established from motile cells. When the sulcal plates of S. lachrymosa, which have not been fully described to date, were carefully examined using scanning electron microscopy, the Korean strain of S. lachrymosa clearly exhibited the anterior sulcal plate (s.a.), right sulcal plate (s.d.), left sulcal plate (s.s.), median sulcal plate (s.m.), and posterior sulcal plate (s.p.). When properly aligned, the large subunit (LSU) rDNA sequence of the Korean strain of S. lachrymosa was ca. 1% different from those of two Norwegian strains of S. lachrymosa, the only strains for which LSU sequences have been reported. The internal transcribed spacer (ITS) rDNA sequence of the Korean strain of S. lachrymosa was also ca. 1% different from those of the Scottish and Chinese strains and 3% different from those of the Canadian, German, Greek, and Portuguese strains. Thus, the Korean S. lachrymosa strain has unique LSU and ITS sequences. The abundances of S. lachrymosa in the waters of 28 stations, located in the East, West, and South Sea of Korea, were quantified in four seasons from January 2016 to October 2017, using quantitative real-time polymerase chain reaction method and newly designed specific primer-probe sets. Its abundances were >$0.1cells\;mL^{-1}$ at eight stations in January and March 2016 and March 2017, and its highest abundance in Korean waters was $26cells\;mL^{-1}$. Thus, S. lachrymosa has a nationwide distribution in Korean waters as motile cells.

Differentiation Inductions Altered Telomere Length and Telomerase Activity in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Jeon, Ryoung-Hoon;Park, Byung-Joon;Jang, Si-Jung;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.93-99
    • /
    • 2019
  • Telomeres are known as a specialized region in the end of chromosomes to protect DNA destruction, but their lengths are shortened by repetition of cell division. This telomere shortening can be preserved or be elongated by telomerase and TERT expression. Although a certain condition in the cells may affect to the cellular and molecular characteristics, the effect of differentiation induction to telomere length and telomerase activity in mesenchymal stem cells (MSCs) has been less studied. Therefore, the present study aimed to uncover periodical alterations of telomere length, telomerase activity and TERT expression in the dental pulp-derived MSCs (DP-MSCs) under condition of differentiation inductions into adipocytes and osteoblasts on a weekly basis up to 3 weeks. Shortening of telomere was significantly (p < 0.05) identified from early-middle stages of both differentiations in comparison with undifferentiated DP-MSCs by non-radioactive chemiluminescent assay and qRT-PCR method. Telomere length in undifferentiated DP-MSCs was 10.5 kb, but the late stage of differentiated DP-MSCs which can be regarded as the adult somatic cell exhibited 8.1-8.6 kb. Furthermore, the relative-quantitative telomerase repeat amplification protocol or western blotting presented significant (p < 0.05) decrease of telomerase activity since early stages of differentiations or TERT expression from middle stages of differentiations than undifferentiated state, respectively. Based on these results, it is supposed that shortened telomere length in differentiated DP-MSCs was remained along with prolonged differentiation durations, possibly due to weakened telomerase activity and TERT expression. We expect that the present study contributes on understanding differentiation mechanism of MSCs, and provides standardizing therapeutic strategies in clinical application of MSCs in the animal biotechnology.

Expression and Clinical Significance of MicroRNA-376a in Colorectal Cancer

  • Mo, Zhan-Hao;Wu, Xiao-Dong;Li, Shuo;Fei, Bing-Yuan;Zhang, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9523-9527
    • /
    • 2014
  • The incidence of colorectal cancer (CRC) is increasing in many Asian countries and microRNAs have already been proven to be associated with tumorigenesis. Currently, microRNA-376a (miR-376a) expression and association with clinical factors in CRC remains unclear. In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was carried out on 53 matched pairs of CRC and adjacent normal mucosa to investigate the expression levels of miR-376a. According to the high or low expression of miR-376a, patients were divided into two groups. The relationship between miR-376a expression and clinicopathological factors of 53 patients was evaluated. Survival analysis of 53 CRC patients was performed with clinical follow-up information and survival curves were assessed by the Kaplan-Meier method. Immunohistochemistry (IHC) staining was performed on sections of paraffin-embedded tissue to investigate the vascular endothelial growth factor (VEGF) expression. MiR-376a showed low expression in cancer tissues compared to the adjacent normal tissues and altered high miR-376a expression tended to be positively correlated with advanced lymph node metastasis and shorter patient survival. VEGF IHC positivity was significantly more common in patients with high expression levels of miR-376a.Those results demonstrated that miR-376a may be a meaningful prognostic biomarker and potential therapeutic target in colorectal cancer.

Silencing of Rac3 Inhibits Proliferation and Induces Apoptosis of Human Lung Cancer Cells

  • Liu, Tie-Qin;Wang, Ge-Bang;Li, Zheng-Jun;Tong, Xiang-Dong;Liu, Hong-Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.3061-3065
    • /
    • 2015
  • Background: Rac3, a member of the Rac family of small guanosine triphosphatases (GTPases), regulates a variety of cell functions, including the organization of the cytoskeleton, cell migration, and invasion. Overexpression of Rac3 has been reported in several human cancers. However, the role of Rac3 in lung cancer (LC) has not been determined in detail. The purpose of this study was to investigate the effect of silencing of Rac3 expression in human LC cells and the consequences for cell survival. Materials and Methods: Lentivirus small hairpin RNA (shRNA) interference techniques were utilized to knock down the Rac3 gene. Gene and protein expression was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. LC cell apoptosis was examined by annexin V-APC /propidium iodide staining. Results: Efficient silencing of Rac3 strongly inhibited A549 cell proliferation and colony formation ability, and significantly decreased tumor growth. Moreover, flow cytometry analysis showed that knockdown of Rac3 led to G2/M phase cell cycle arrest as well as an excess accumulation of cells in the G1 and S phase. Conclusions: Thus, functional analysis using shRNAs revealed a critical role for Rac3 in the tumor growth of LC cells. shRNA silencing of Rac3 could provide an effective strategy to treat LC.

Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7943-7957
    • /
    • 2015
  • Background and Aims: Colorectal cancer is one of the leading causes of death in the world. The aim of this study was to investigate the growth-suppression potentiality of a crude saponin extract (CSENS) prepared from medicinal herb, Nigella sativa, on human colon cancer cells, HCT116. Materials and Methods: HCT116 cells were subjected to increasing doses of CSENS for 24, 48 and 72 h, and then harvested and assayed for cell viability by WST-1. Flow cytometry analyses, cell death detection ELISA, fluorescent stains (Hoechst 33342 and acridine orange/ethidium bromide), DNA laddering and comet assays were carried out to confirm the apoptogenic effects of CSENS. Luciferase reporter gene assays, quantitative reverse transcription-polymerase chain reaction and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Results: The results demonstrated that CSENS inhibited proliferation and induced apoptosis. Apoptosis was confirmed by flow cytometry analyses, while CSENS-treated cells exhibited morphological hallmarks of apoptosis including cell shrinkage, irregularity in cellular shape, cellular detachment and chromatin condensation. Biochemical signs of apoptosis, such as DNA degradation, were observed by comet assay and gel electrophoresis. The pro-apoptotic effect of CSENS was caspase-3-independent and associated with increase of the Bax/Bcl-2 ratio. CSENS treatment down-regulated transcriptional and DNA-binding activities of NF-${\kappa}B$ and AP-1 proteins, associated with down-regulation of their target oncogenes, c-Myc, cyclin D1 and survivin. On the other hand, CSENS up-regulated transcriptional and DNA-binding activities of Nrf2 and expression of cytoprotective genes. In addition, CSENS modulated the expression levels of ERK1/2 MAPK, p53 and p21. Conclusions: These findings suggest that CSENS may be a valuable agent for treatment of colon cancer.

Expression and Significance of Microsomal Prostaglandin Synthase-1 (mPGES-1) and Beclin-1 in the Development of Prostate Cancer

  • Xu, Lu-Wei;Qian, Ming;Jia, Rui-Peng;Xu, Zheng;Wu, Jian-Ping;Li, Wen-Cheng;Huang, Wen-Bin;Chen, Xing-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1639-1644
    • /
    • 2012
  • The aim of this study was to investigate the expression and significance of microsomal prostaglandin synthase-1 (mPGES-1) and Beclin-1 in the development of prostate cancer (PCa). Immunohistochemistry was performed on paraffin-embedded sections with rabbit polyclonal against mPGES-1 and Beclin-1 in 40 PCa, 40 benign prostatic hyperplasia (BPH) and 10 normal prostate specimens for this purpose. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for mRNA expression of mPGES-1 and Beclin-1, while MTT assays were used to ascertain the best working concentration of the mPGES-1 inhibitor (CAY10526). The effect of CAY10526 treatment on expression of Beclin-1 in DU-145 cells was studied using Western blot analysis. Localization of Beclin-1 and mPGES-1 was in endochylema. Significant differences in expression was noted among PCa, BPH and normal issues (P<0.05). Beclin-1 expression inversely correlated with mPGES-1 expression in PCa tissue (P<0.05). CAY10526 could significantly block mPGES-1 expression and the proliferation of DU-145 cells (P<0.05), while increasing Beclin-1 levels (P<0.05). Overexpression of mPGES-1 could decrease the autophagic PCa cell death. Inhibiting the expression of mPGES-1 may lead to DU-145 cell death and up-regulation of Beclin-1. The results suggest that inhibition of mPGES-1 may have therapeutic potential for PCa in the future.

HIF-1α and GLUT1 Gene Expression is Associated with Chemoresistance of Acute Myeloid Leukemia

  • Song, Kui;Li, Min;Xu, Xiao-Jun;Xuan, Li;Huang, Gui-Nian;Song, Xiao-Ling;Liu, Qi-Fa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1823-1829
    • /
    • 2014
  • Aims: Much evidence suggests that increased glucose metabolism in tumor cells might contribute to the development of acquired chemoresistance. However, the molecular mechanisms are not fully clear. Therefore, we investigated a possible correlation of mRNA expression of HIF-$1{\alpha}$ and GLUT1 with chemoresistance in acute myeloid leukemia (AML). Methods: Bone marrow samples were obtained from newly diagnosed and relapsed AML (M3 exclusion) cases. RNA interference with short hairpin RNA (shRNA) was used to stably silence GLUT1 or HIF-$1{\alpha}$ gene expression in an AML cell line and HIF-$1{\alpha}$ and GLUT1 mRNA expression was measured by real-time quantitative polymerase chain reaction assay (qPCR). Results: High levels of HIF-$1{\alpha}$ and GLUT1 were associated with poor responsiveness to chemotherapy in AML. Down-regulation of the expression of GLUT1 by RNA interference obviously sensitized drug-resistant HL-60/ADR cells to adriamycin (ADR) in vitro, comparable with RNA interference for the HIF-$1{\alpha}$ gene. Conclusions: Our data revealed that over-expression of HIF-$1{\alpha}$ and GLUT1 might play a role in the chemoresistance of AML. GLUT1 might be a potential target to reverse such drug resistance.

Transcriptomic profiling of the maize (Zea mays L.) to drought stress at the seedling stage

  • Moon, Jun-Cheol;Kim, Hyo Chul;Lee, Byung-Moo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.111-111
    • /
    • 2017
  • The development and productivity of maize (Zea mays L.) is frequently impacted by water scarcity, and consequently to increased drought tolerance in a priority target in maize breeding programs. To elucidate the molecular mechanisms of resistance to drought stress in maize, RNA-seq of the public database was used for transcriptome profiling of the seedling stage exposed to drought stress of three levels, such as moderate, severe drought stress and re-watering. In silico analysis of differentially expressed genes (DEGs), 176 up-regulated and 166 down-regulated DEGs was detected at moderated stress in tolerance type. These DEGs was increasing degradation of amino acid metabolism in biological pathways. Six modules based on a total of 4,771 DEGs responses to drought stress by the analysis of co-expression network between tolerance and susceptible type was constructed and showed to similar module types. These modules were discriminated yellow, greenyellow, turquoise, royalblue, brown4 and plum1 with 318, 2433, 375, 183, 1405 and 56 DEGs, respectively. This study was selected 30 DEGs to predicted drought stress response gene and was evaluated expression levels using drought stress treated sample and re-watering sample by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 23 genes was shown increasing with drought stress and decreasing with re-watering. This study contribute to a better understanding of the molecular mechanisms of maize seedling stage responses to drought stress and could be useful for developing maize cultivar resistant to drought stress.

  • PDF