• Title/Summary/Keyword: Quantitative NDE technique

Search Result 12, Processing Time 0.017 seconds

Nondestructive Evaluation Technology and Reliability of Products

  • Lee, Joon-Hyun;Lee, Seung-Suck
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.235-238
    • /
    • 2001
  • It is well known that the reliability of materials of mechanical products is becoming more and more important not only for assurance of quality, but for international competition of products. In order to assure the reliability of materials or mechanical products nondestructive evaluation (NDE) techniques are playing more important roles. The existence of Internal defects in materials or mechanical parts is served as crack initiation site during the various loading condition. Historically, nondestructive evaluation (NDE) technique has been used almost exclusively for detecting microscopic discontinuities In materials or mechanical parts after they have been in service to expand the role of the NDE to include all aspects of materials production and application. Research efforts are being directed at developing and perfecting NDE techniques capable of monitoring (1) materials production processes (2) material integrity following transport, storage and fabrication and (3) the amount and rate of degradation during service. In addition, efforts are underway to develop technique capable of quantitative discontinuity sizing, permitting determination of response using fracture mechanics analysis, as well as techniques for quantitative materials characterization to replace the qualitative techniques used in the past. In this paper, the important role of NDE technology for reliability assurance of materials/mechanical parts is introduced.

  • PDF

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

New Approaches to Flaw Classification and Sizing for Quantitative Ultrasonic Testing (정량적 초음파 시험을 위한 결함분류와 크기산정의 새로운 기법)

  • 송성진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.3-16
    • /
    • 1997
  • In modern high performance engineering applications, the structural integrity of materials and structures are quite often evaluated using fracture mechanics. This evaluation in turn requires information on the flaw geometry (location, type, shape, size, and orientation). The ultrasonic nondestructive evaluation (NDE) method is one technique that is commonly used to provide such information. Flaw classification (determination of the flaw type ) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues for quantitative ultrasonic NDE. In this paper new approaches to both classification and sizing of flaws are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent (TOFE) sizing method is presented. The techniques proposed here are in a form that can be used directly in many practical applications to quantitative estimates of the flaw's significance.

  • PDF

Study on Highly Accuracy Quality Evaluation of Spot Weld by use of Image Processing Technique

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.38-46
    • /
    • 1996
  • This paper discusses the feasibility of Ultrasonic Nondestructive Evaluation (UNDE) technique for sport weld quality. Ultrasonic c-scan image assisted by image processing technique was used for Nondestructive Evaluation(NDE) of spot weld quality. Ultrasonic testing results obtained were confirmed and compared by Optical Microscope and SAM(Scanning Acoustic Mircroscope) observation of the spot-weld cross section, The results show that the nugget dinameter can be successfully measured with the accuracy of 0.5mm. It was ascertained that ultrasonic c-scan technique is very effective method for the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget. Additional support for the above conclusions is provided by the results for galvanized steel. The ultrasonic results for galvanized welds generally correspond to the results for uncoated steel. Finally, it was found that the above-mentioned technique can be sufficiently applied to NDE method for securing the Quality Assurance(QA) of spot welded products in production line.

  • PDF

A Study on the Guided Wave Mode Conversion using Self-calibrating Technique (자가교정기법에 의한 유도초음파 모드전이에 관한 연구)

  • Park, Jung-Chul;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.206-212
    • /
    • 2000
  • The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer & specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data & the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration & multi-mode conversion in guided wave scattering problems.

  • PDF

Nondestructive evaluation of spot weld quality using by ultrasonic measurement (초음파계측에 의한 SPOT용접품질의 비파괴평가)

  • 박익근
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.109-117
    • /
    • 1994
  • Spot welding has wide used with a high work efficiency in the automotive and aerospace industries. Up to the present, the technique mainly used to test spot welds on production lines has been entirely depended upon destructive chisel or peel testing. Therefore, it's being very important assignment to secure the NDE technique which can be evaluate spot weld quality with more efficiency and high reliability. This paper discusses the feasibility of UNDE techniques to evaluate spot weld quality. For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of a the corona bond from nugget, ultrasonic c-scan image and distribution of reflective echo amplitude was measured by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). As the results of this study, corona bond which is the most dangerous types of interface defects can be successfully detected, as well as expulsion and voids. Ultrasonic testing results were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be successfully measured with the accuracy of 0.8 mm.

  • PDF

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Eddy Current Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 와전류법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • A nondestructive evaluation technique was developed for the quantitative determination of the reinforcement volume fractions in particulate reinforced metal matrix composites. The proposed technique employed a composite micromechanics which accounts for the microstructure of the composite medium together with the measurement of anisotropic electrical conductivity. When the measured conductivity was coupled with the theoretically predicted conductivity, the unknown reinforcement volume fraction was calculated. An analytical model based on the Mori-Tanaka method was described which relates the NDE signatures to the composite microstructure. The volume fractions were calculated using eddy current measurements made on a wide range of silicon carbide particulate ($SiC_p$) reinforced aluminum (Al) matrix composites. The calculated $SiC_p$ volume fractions were in good agreement with the measured volume fractions in the range of 0-30%. The technique was also found to be effective in estimating the total volume percentage of reinforcement and intermetallic compound formed during the processing stage.

  • PDF

Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects (재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석)

  • Lee, Joon-Hyun;Lee, Seo-Il;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.304-312
    • /
    • 1998
  • In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem.

  • PDF