• Title/Summary/Keyword: Quantile-regression

Search Result 201, Processing Time 0.025 seconds

Regression Quantile Estimations on Censored Survival Data

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • In the case of multiple survival times which might be censored at each covariate vector, we study the regression quantile estimations in this paper. The estimations are based on the empirical distribution functions of the censored times and the sample quantiles of the observed survival times at each covariate vector and the weighted least square method is applied for the estimation of the regression quantile. The estimators are shown to be asymptotically normally distributed under some regularity conditions.

  • PDF

Trend analysis of extream precipitation in Korea using Quantile Regression (Quantile Regression을 활용한 우리나라 극치강수량 경향성 분석)

  • So, Byung-Jin;Kwon, Hyun-Han;Park, Rae-Gun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.369-370
    • /
    • 2012
  • 일반적으로 회귀분석의 최적화는 평균적인 개념을 확장하여 사용되어지고 있다. 평균은 관찰값들에 관한 모든 정보와 관련된 통계량으로써 많은 연구에 이용되어지고 있다. 정규분포를 이루는 모집단의 경우 평균을 사용한 추정이 바람직하지만, 이상치로 인한 분포의 꼬리가 두꺼워지는 경우 중위수(median)를 사용하는 것이 바람직하다고 알려져 있다. 강수량의 분포형태는 꼬리(tail)가 두꺼운 왜곡된 형태를 갖고 있으므로 robust 통계량인 Quantile을 이용한 강수량의 분석 및 평가를 실시하였다. 본 연구에서는 Quantile에 따른 회귀선의 변화를 이용하여 강수량의 경향성을 평가하고, 극치강수량의 변화를 보여줄 수 있는 Quantle값을 추출해 보고자 한다. 또한 bootstrap 방법을 이용하여 Quantile에 따른 회귀계수의 신뢰구간을 분석하여 회귀인자의 신뢰성을 평가하였다. 본 연구에서 적용한 Quantile Regression 기법은 회귀계수의 추정에 있어서 회귀인자의 신뢰성을 Quantile-회귀계수 그래프를 통해 분석할 수 있으며, 이상값의 영향을 저감시키는 평균과 달리 이상값의 영향을 효과적으로 분리 및 재현시킬 수 있어 극치값에 따른 변화를 효과적으로 평가할 수 있으며, robust 통계량의 특징인 분산이 적은 안정적인 추정량을 확보할 수 있다.

  • PDF

Regression Quantile Estimators of a Nonlinear Time Series Regression Model

  • Kim Tae Soo;Hur Sun;Kim Hae Kyung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.13-15
    • /
    • 2000
  • In this paper, we deal with the asymptotic properties of the regression quantile estimators in the nonlinear time series regression model. For the sinusodial model which frequently appears fer a time series analysis, we study the strong consistency and asymptotic normality of regression quantile ostinators.

  • PDF

Iterative Support Vector Quantile Regression for Censored Data

  • Shim, Joo-Yong;Hong, Dug-Hun;Kim, Dal-Ho;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.195-203
    • /
    • 2007
  • In this paper we propose support vector quantile regression (SVQR) for randomly right censored data. The proposed procedure basically utilizes iterative method based on the empirical distribution functions of the censored times and the sample quantiles of the observed variables, and applies support vector regression for the estimation of the quantile function. Experimental results we then presented to indicate the performance of the proposed procedure.

A comparison study of multiple linear quantile regression using non-crossing constraints (비교차 제약식을 이용한 다중 선형 분위수 회귀모형에 관한 비교연구)

  • Bang, Sungwan;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.773-786
    • /
    • 2016
  • Multiple quantile regression that simultaneously estimate several conditional quantiles of response given covariates can provide a comprehensive information about the relationship between the response and covariates. Some quantile estimates can cross if conditional quantiles are separately estimated; however, this violates the definition of the quantile. To tackle this issue, multiple quantile regression with non-crossing constraints have been developed. In this paper, we carry out a comparison study on several popular methods for non-crossing multiple linear quantile regression to provide practical guidance on its application.

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.209-215
    • /
    • 2009
  • In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.

Prediction of extreme PM2.5 concentrations via extreme quantile regression

  • Lee, SangHyuk;Park, Seoncheol;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • In this paper, we develop a new statistical model to forecast the PM2.5 level in Seoul, South Korea. The proposed model is based on the extreme quantile regression model with lasso penalty. Various meteorological variables and air pollution variables are considered as predictors in the regression model, and the lasso quantile regression performs variable selection and solves the multicollinearity problem. The final prediction model is obtained by combining various extreme lasso quantile regression estimators and we construct a binary classifier based on the model. Prediction performance is evaluated through the statistical measures of the performance of a binary classification test. We observe that the proposed method works better compared to the other classification methods, and predicts 'very bad' cases of the PM2.5 level well.

A Study on Determinants of Inventory Turnover using Quantile Regression Analysis (분위회귀분석을 이용한 재고회전율 결정요인 분석)

  • Kim, Gilwhan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.185-195
    • /
    • 2022
  • Purpose - This study attempts to analyze the determinants of inventory turnover by applying quantile regression analysis. Design/methodology/approach - By selecting the gross margin, capital intensity, and sale surprise as the determinants of inventory turnover, we investigate their effects on inventory turnover at the several quartiles (10%, 25%, 50%, 75%, 90%) of inventory turnover with quantile regression analysis. Findings - The effects of gross margin and capital intensity on inventory turnover are different for each quartile. But the effects of sale surprise on inventory turnover are not different for each quartile. Research implications or Originality -This study is the first attempt to examine the effects of inventory turnover determinants on inventory turnover by applying quantile regression analysis was not employed in the prior studies. Thus, this study is meaningful in that it shows the possible way to review inventory management strategies that can be applied differently to the firms with different inventory turnover levels.

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

Penalized quantile regression tree (벌점화 분위수 회귀나무모형에 대한 연구)

  • Kim, Jaeoh;Cho, HyungJun;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1361-1371
    • /
    • 2016
  • Quantile regression provides a variety of useful statistical information to examine how covariates influence the conditional quantile functions of a response variable. However, traditional quantile regression (which assume a linear model) is not appropriate when the relationship between the response and the covariates is a nonlinear. It is also necessary to conduct variable selection for high dimensional data or strongly correlated covariates. In this paper, we propose a penalized quantile regression tree model. The split rule of the proposed method is based on residual analysis, which has a negligible bias to select a split variable and reasonable computational cost. A simulation study and real data analysis are presented to demonstrate the satisfactory performance and usefulness of the proposed method.