• Title/Summary/Keyword: Quantile-on-quantile estimation

Search Result 88, Processing Time 0.022 seconds

Regression Quantile Estimations on Censored Survival Data

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • In the case of multiple survival times which might be censored at each covariate vector, we study the regression quantile estimations in this paper. The estimations are based on the empirical distribution functions of the censored times and the sample quantiles of the observed survival times at each covariate vector and the weighted least square method is applied for the estimation of the regression quantile. The estimators are shown to be asymptotically normally distributed under some regularity conditions.

  • PDF

Quantile regression with errors in variables

  • Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.439-446
    • /
    • 2014
  • Quantile regression models with errors in variables have received a great deal of attention in the social and natural sciences. Some eorts have been devoted to develop eective estimation methods for such quantile regression models. In this paper we propose an orthogonal distance quantile regression model that eectively considers the errors on both input and response variables. The performance of the proposed method is evaluated through simulation studies.

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

Iterative Support Vector Quantile Regression for Censored Data

  • Shim, Joo-Yong;Hong, Dug-Hun;Kim, Dal-Ho;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.195-203
    • /
    • 2007
  • In this paper we propose support vector quantile regression (SVQR) for randomly right censored data. The proposed procedure basically utilizes iterative method based on the empirical distribution functions of the censored times and the sample quantiles of the observed variables, and applies support vector regression for the estimation of the quantile function. Experimental results we then presented to indicate the performance of the proposed procedure.

Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints (커널 제약식을 이용한 다중 비교차 분위수 함수의 순차적 추정법)

  • Bang, Sungwan;Jhun, Myoungshic;Cho, HyungJun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.915-922
    • /
    • 2013
  • Quantile regression can estimate multiple conditional quantile functions of the response, and as a result, it provide comprehensive information of the relationship between the response and the predictors. However, when estimating several conditional quantile functions separately, two or more estimated quantile functions may cross or overlap and consequently violate the basic properties of quantiles. In this paper, we propose a new stepwise method to estimate multiple non-crossing quantile functions using constraints on the kernel coefficients. A simulation study are presented to demonstrate satisfactory performance of the proposed method.

Asymmetric nexus between nuclear energy technology budgets and carbon emissions in European economies: Evidence from quantile-on-quantile estimation

  • Shuifa Shen;Muhammad Zahir Faridi;Raima Nazar;Sajid Ali
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3298-3306
    • /
    • 2024
  • Our research seeks to assess the influence of nuclear energy technology on carbon emissions in the top 10 European economies comprising the topmost nuclear energy R&D budget (France, Germany, Russia, the Netherlands, the UK, Finland, Spain, Sweden, Italy, and Switzerland). Unlike prior investigations predominantly relying on panel data methodologies without considering the distinctive characteristics of each economy, our study employs the advanced 'Quantile-on-Quantile' approach. This novel methodology enables us to investigate the interactions between variables within each unique nation, thereby improving the precision of our analysis. As a result, the study provides a thorough global perspective, revealing nuanced findings pertinent to each economy's specific attributes. Our outcomes demonSstrate a positive interconnection between nuclear energy technology and carbon emissions across various quantiles in our analyzed nations. Additionally, the study highlights diverse patterns in these associations within individual economies. These findings emphasize the significance of policymakers performing comprehensive measurements and devising effective strategies to monitor fluctuations in nuclear energy technology and carbon emissions.

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

Quantile Estimation in Successive Sampling

  • Singh, Housila P.;Tailor, Ritesh;Singh, Sarjinder;Kim, Jong-Min
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2006.12a
    • /
    • pp.67-83
    • /
    • 2006
  • In successive sampling on two occasions the problem of estimating a finite population quantile has been considered. The theory developed aims at providing the optimum estimates by combining (i) three double sampling estimators viz. ratio-type, product-type and regression-type, from the matched portion of the sample and (ii) a simple quantile based on a random sample from the unmatched portion of the sample on the second occasion. The approximate variance formulae of the suggested estimators have been obtained. Optimal matching fraction is discussed. A simulation study is carried out in order to compare the three estimators and direct estimator. It is found that the performance of the regression-type estimator is the best among all the estimators discussed here.

  • PDF