Communications for Statistical Applications and Methods
/
v.26
no.1
/
pp.35-46
/
2019
Multivariate Confidence Region (MCR) cannot be used to obtain the confidence region of the mean vector of multivariate data when the normality assumption is not satisfied; however, the Quantile Confidence Region (QCR) could be used with a Multivariate Quantile Vector in these cases. The coverage rate of the QCR is better than MCR; however, it has a disadvantage because the QCR has a wide shape when the probability density function follows a bimodal form. In this study, we propose a Quantile Confidence Region using the Highest density (QCRHD) method with the Highest Density Region (HDR). The coverage rate of QCRHD was superior to MCR, but is found to be similar to QCR. The QCRHD is constructed as one region similar to QCR when the distance of the mean vector is close. When the distance of the mean vector is far, the QCR has one wide region, but the QCRHD has two smaller regions. Based on these features, it is found that the QCRHD can overcome the disadvantages of the QCR, which may have a wide shape.
Purpose - This study attempts to analyze the determinants of inventory turnover by applying quantile regression analysis. Design/methodology/approach - By selecting the gross margin, capital intensity, and sale surprise as the determinants of inventory turnover, we investigate their effects on inventory turnover at the several quartiles (10%, 25%, 50%, 75%, 90%) of inventory turnover with quantile regression analysis. Findings - The effects of gross margin and capital intensity on inventory turnover are different for each quartile. But the effects of sale surprise on inventory turnover are not different for each quartile. Research implications or Originality -This study is the first attempt to examine the effects of inventory turnover determinants on inventory turnover by applying quantile regression analysis was not employed in the prior studies. Thus, this study is meaningful in that it shows the possible way to review inventory management strategies that can be applied differently to the firms with different inventory turnover levels.
Communications for Statistical Applications and Methods
/
v.29
no.3
/
pp.319-331
/
2022
In this paper, we develop a new statistical model to forecast the PM2.5 level in Seoul, South Korea. The proposed model is based on the extreme quantile regression model with lasso penalty. Various meteorological variables and air pollution variables are considered as predictors in the regression model, and the lasso quantile regression performs variable selection and solves the multicollinearity problem. The final prediction model is obtained by combining various extreme lasso quantile regression estimators and we construct a binary classifier based on the model. Prediction performance is evaluated through the statistical measures of the performance of a binary classification test. We observe that the proposed method works better compared to the other classification methods, and predicts 'very bad' cases of the PM2.5 level well.
Quantile regression provides a variety of useful statistical information to examine how covariates influence the conditional quantile functions of a response variable. However, traditional quantile regression (which assume a linear model) is not appropriate when the relationship between the response and the covariates is a nonlinear. It is also necessary to conduct variable selection for high dimensional data or strongly correlated covariates. In this paper, we propose a penalized quantile regression tree model. The split rule of the proposed method is based on residual analysis, which has a negligible bias to select a split variable and reasonable computational cost. A simulation study and real data analysis are presented to demonstrate the satisfactory performance and usefulness of the proposed method.
Objectives: This study aimed to identify regional differences in the high-risk drinking rate among yearly alcohol users in Korea and to identify relevant regional factors for each quintile using quantile regression. Methods: Data from 227 counties surveyed by the 2017 Korean Community Health Survey (KCHS) were analyzed. The analysis dataset included secondary data extracted from the Korean Statistical Information Service and data from the KCHS. To identify regional factors related to the high-risk drinking rate among yearly alcohol users, quantile regression was conducted by dividing the data into 10%, 30%, 50%, 70%, and 90% quantiles, and multiple linear regression was also performed. Results: The current smoking rate, perceived stress rate, crude divorce rate, and financial independence rate, as well as one's social network, were related to the high-risk drinking rate among yearly alcohol users. The quantile regression revealed that the perceived stress rate was related to all quantiles except for the 90% quantile, and the financial independence rate was related to the 50% to 90% quantiles. The crude divorce rate was related to the high-risk drinking rate among yearly alcohol users in all quantiles. Conclusions: The findings of this study suggest that local health programs for high-risk drinking are needed in areas with high local stress and high crude divorce rates.
The quantile regression method proposed by Koenker et al. (1978) focuses on conditional quantiles given by independent variables, and analyzes the relationship between response variable and independent variables at the given quantile. Considering the linear programming used for the estimation of quantile regression coefficients, the model fitting job might be difficult when large data are introduced for analysis. Therefore, dimension reduction (or variable selection) could be a good solution for the quantile regression of large data sets. Regression tree methods are applied to a variable selection for quantile regression in this paper. Real data of Korea Baseball Organization (KBO) players are analyzed following the variable selection approach based on the regression tree. Analysis result shows that a few important variables are selected, which are also meaningful for the given quantiles of salary data of the baseball players.
Purpose: The objective of this study was to identify the predictors of self-care behaviors among elderly patients with hypertension using quantile regression method. Methods: A total of 253 elderly patients diagnosed with hypertension was recruited via 3 different medical clinics for the study. The quantile regression and a liner regression was conducted using Stata 12.0 program by analyzing predictors of self-care behaviors. Results: In the ordinary least square, self-efficacy, period of disease, and education level explained 42% of the variance in self-care activities. In the quantile regression, affecting predictors of self-care behaviors were self-efficacy for all quantiles, the period of disease for from 60% quantile to 90% quantile, education level for 20%, 30%, and 50% quantiles, economic status for 10%, 50%, and 60% quantiles, age for 10%, 70% quantiles, fatigue for 10% quantile, knowledge about hypertension for 10% and 20% quantiles, and depression for 30% and 40% quantiles. Conclusion: The affecting predictors of self-care behaviors among elderly with hypertension were different from the level of self-care behaviors. These results indicated the significance in assessing predictors according to the level of self-care behaviors when clinical nurses examine the patients' health behaviors and plan any intervention strategies. Specially, education level and knowledge about hypertension were the significant predictors of self-care activities for low quantiles. Clinical nurses may promote self-care activities of the given population though health education programs.
Background: Dentist's income is quite variable. We investigate the factors underlying the distribution of dental revenue and dentist income. Methods: Financial and structural variables of private dental practices(N=13,967) were examined with 2010 Economic Census microdata which include non-insurance revenue. We conducted quantile regression method(QRM) and ordinary least square(OLS) in treating skewness and heteroskedasticity of distributions. The effective estimation for the upper and lower range of distribution becomes possible by QRM. Results: Mid-career dentists are shown to have higher revenue and income. Male dentists achieve the higher revenue and income than female dentists in all quantiles. Group practices show lower income per owner than solo practices significantly. The revenue and income are increased with increasing size of clinics. The high cost in renting the clinic office is found to have a big positive effect on the revenue but a little positive effect on the income. Interestingly the density of dentists shows negative effect on the lowest quantile of the revenue but positive effect on the highest quantile. The lowest quantile of the revenue in the capital areas have the relatively high revenue. The lowest quantile of the income in metropolitan city show higher income than those in other areas significantly. Conclusion: The suggested QRM is shown to have more effective and efficient tool in finding out determinants of dentists' revenue and income of our concern. The results of this study are expected to be employed for dentists preparing for the opening practices in their organizational settings and locational selections. The distributional efficiency of dental human resources could be accomplished if policy makers guide dentists with this knowledge.
In this study, we estimate the quantile-regression framework of the shipping industry for the Capesize used ship, which is a typical raw material transportation from January 2000 to December 2021. This research aims two main contributions. First, we analyze the relationship between the Capesize used ship, which is a typical type in the raw material transportation market, and the freight market, for which mixed empirical analysis results are presented. Second, we present an empirical analysis model that considers the structural transformation proposed in the Hyunsok Kim and Myung-hee Chang(2020a) study in quantile-regression. In structural change investigations, the empirical results confirm that the quantile model is able to overcome the problems caused by non-stationarity in time series analysis. Then, the long-run relationship of the co-integration framework divided into long and short-run effects of exogenous variables, and this is extended to a prediction model subdivided by quantile. The results are the basis for extending the analysis based on the shipping theory to artificial intelligence and machine learning approaches.
This study investigates the effects of entrepreneurship and corporate social responsibility (CSR) on firm performance. I use the conditional quantile regression as well as the ordinary least square (OLS) with 300 samples, only medium and small size companies. I found firstly, entrepreneurship affected overall positively firm performance in the all quantile levels. Secondly, CSR also have a positive impact on firm performance in the overall all quantile levels. By these results, I recommend that entrepreneurship and CSR should a positive impact on the firm performance for the small and medium business companies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.