The term "social marketing" was first introduced in 1971 to describe the use of marketing principles and techniques to advance a social cause, idea, or behavior. Social Marketing is a strategy for changing behavior. It utilizes concepts of market segmentation, consumer research, product concept development and testing, directed communication, facilitation, incentives, and exchange theory to maximize the target adopters' response. Social marketing requires knowledge of each target-adopter group, including its 1. social demographic characteristics, 2. psychological profile and 3. behavioral characteristics. To know the target adopters in these three related ways enables social marketer to make more accurate predictions. In addition to differentiating among and selecting target adopter groups, the social marketer will identify influence-holding groups, or influentials, who can affect a program's success. Great changes and opportunities exist to produce changes in the ways that individuals and groups think and behave and in meeting human needs. The balance of the scales of social change, we hope, will shift away from the use of force and violence to the use of persuasion and voluntary action. I trust that this dissertation will be useful highlighting the strategies and means of peaceful, planned social change designed to elevate the quality of life.
Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
Tribology and Lubricants
/
제39권3호
/
pp.118-122
/
2023
In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.
Journal of the Korean Data and Information Science Society
/
제22권4호
/
pp.755-764
/
2011
기업은 종종 과거의 필드 고장 데이터를 이용하여 미래에 필드에서 고장이 얼마나 일어날 것인지 예측한다. 특히 이런 예측은 필드에서 예기치 않던 고장모드 (failure mode)가 발견될 때 더욱 하고 싶어진다. 왜냐하면 기업은 이런 예측을 통해 미래에 품질보증 비용이 얼마나 될 것인지 파악하고, 고장 난 부품을 재빨리 수리하는데 필요한 여유 부품의 수를 파악하고 싶기 때문이다. 본 연구에서는 기업에서 생길 수 있는 요약 데이터를 사용하여 미래 필드에서 고장이 얼마나 발생할 것인지 예측하고, 이런 요약 데이터이외에 또 어떤 데이터가 생길 수 있으며 이때 분석결과가 어떻게 나올 수 있는지 알아본다.
온라인 게임에서 다른 플레이어와의 상호작용은 플레이어의 만족도에 영향을 미친다. 따라서, 비슷한 수준의 플레이어를 매치시켜 원활한 상호작용을 도모하는 것은 플레이어의 게임 경험을 위해 중요하다. 그러나, 게임의 최종승패로만 플레이어의 평가점수를 증감시키는 현재의 평가 방식으로는 신규 및 복귀 플레이어의 원활한 매칭이 불가능하다. 본 연구에서는 스타크래프트II의 리플레이를 활용하여 매치메이킹 개선을 위한 기계학습 활용방안을 제시한다. 매치메이킹의 기준이 되는 플레이어의 MMR 점수를 예측하는 기계학습 모델을 생성하고 성능을 평가하였다. 모델의 오차는 리그 평균 MMR 점수 범위의 40.4% 수준으로, 제안된 방식을 통해서 플레이어를 실력과 근접한 리그에 즉시 배치할 수 있음을 확인하였다. 또한, 결과에 대한 플레이어의 수용도를 높일 수 있도록 예측의 근거를 도출하는 방안도 제시되었다.
종래의 탄성 고체법을 이용하여 말뚝의 부마찰력을 산정하는 전산프로그램을 개발하였다. 그리고 한계 상대 변위 개념을 도입하여 이 전산프로그램의 수정을 시도하였다. 끝으로 한계 상대변위로서 말뚝과 흙사이의 미끄러짐 발생 여부를 결정하고 모아-쿨롱의 파괴 방정식을 이용하여 부마찰력을 산정하는 단순 전이함수법을 개발하였다. 이 세가지 방법에 의한 결과는 모두 현장 측정치와 잘 일치하였다. 그러나, 이들이 원심력을 이용한 모형실험 결과를 예측할 때에는 각기 다른 결과를 나타내었다. 종합적으로 보면, 이 논문에서 제안한 단순전이 함수법이 말뚝 부마찰력 산정시 그 결과의 정확성과 계산상의 효율성들을 고려할 때 가장 능률적이라고 판단된다.
유한고장수를 가진 비동질적인 포아송 과정에 기초한 모형들에서 잔존 오류 1개당 고장 발생률은 일반적으로 상수, 혹은 단조증가 및 단조 감소 추세를 가지고 있다. 소프트웨어 제품의 정확한 인도시기를 예측하거나 효용성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 지수 커버리지 모형과 S-커버리지 모형을 적용하고 이 분야에 적용 될 수 있는 변형 커버리지 모형(중첩모형 및 혼합모형) 비교 문제를 제안하였다. 고장 간격시간으로 구성된 자료를 이용한 모수추정 방법은 최우추정법과 수치해석 방법인 이분법을 사용하여 모수 추정을 실시하고 효율적인 모형 선택은 편차자승합(SSE)을 이용하였다.
In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.
In a nuclear reactor, gamma radiation is the dominant energy deposition in non-fuel regions. Heat is generated upon gamma deposition and consequently affects the mechanical and thermal structure of the material. Therefore, the safety of samples should be carefully considered so that their integrity and quality can be retained. To evaluate relevant parameters, an in-core gamma thermometer (GT) was used to measure gamma heating (GH) throughout the operation of the McMaster nuclear reactor (MNR) at four irradiation sites. Additionally, a Monte Carlo reactor physics code (Serpent-2) was utilized to model the MNR with the GT located in the same irradiation sites used in the measurement to verify its predictions against measured GH. This research aids in the development of modeling, calculation, and prediction of the GH utilizing Serpent-2 as well as implementing a new GH measurement at the MNR core. After all uncertainties were quantified for both approaches, comparable GH profiles were observed between the measurements and calculations. In addition, the GH values found in the four sites represent a strong level of radiation based on the distance of the sample from the core. In this study, the maximum and minimum GH values were found at 0.32 ± 0.05 W/g and 0.15 ± 0.02 W/g, respectively, corresponding to 320 Sv/s and 150 Sv/s. These values are crucial to be considered whenever sample is planned to be irradiated inside the MNR core.
The purpose of virtual metrology (VM) in semiconductor manufacturing is to predict every wafer's metrological values based on its process equipment data without an actual metrology. In this paper, we propose novelty detection-based reliability estimation models for VM in order to support flexible utilization of VM results. Because the proposed model can not only estimate the reliability of VM, but also identify suspicious process variables lowering the reliability, quality control actions can be taken selectively based on the reliance level and its causes. Based on the preliminary experimental results with actual semiconductor manufacturing process data, our models can successfully give a high reliance level to the wafers with small prediction errors and a low reliance level to the wafers with large prediction errors. In addition, our proposed model can give more detailed information by identifying the critical process variables and their relative impacts on the low reliability.
Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.