• Title/Summary/Keyword: Quality Factor(Q)

Search Result 459, Processing Time 0.025 seconds

Microwave Dielectric Characteristics of $Ba(Mg_{1/3}Nb_{2/3})O_3$ - $La(Mg_{2/3}Nb_{1/3})O_3$ Solid Solutions with Crystal Structure (결정구조에 의한 $Ba(Mg_{1/3}Nb_{2/3})O_3$ - $La(Mg_{2/3}Nb_{1/3})O_3$고용체의 마이크로파 유전 특성)

  • Paik, Jong-Hoo;Lim, Eun-Kyeong;Lee, Mi-Jae;Choi, Byung-Hyun;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.738-743
    • /
    • 2004
  • The microwave dielectric properties and their related structural characteristics in solid solutions of (1-x) $Ba(Mg_{1/3}Nb_{2/3})O_3$ -x $La(Mg_{2/3}Nb_{1/3})O_3$ (BLMN) have been investigated by measuring the dielectric constant${\varepsilon}r)$, Q value and temperature coefficient of resonant frequency$({\tau}f)$ and by observing the crystal structure using high resolution transmission electron microscopy (HRTEM). Microwave dielectric properties showed characteristic features for specific composition. Dielectric constant$({\varepsilon}r)$ showed maximum value at the composition which corresponds to the phase boundary between 1:2 ordered and 1:1 ordered structure. The increase in ${\varepsilon}_r$ may be caused by the rattling of ions by incorporating smaller ions and the disordered structure. The variation of temperature coefficient of resonant frequency${{\tau}_f)$ was investigated in terms of oxygen octahedra tilting.

  • PDF

Microstructure and Piezoelectric Properties of (Na,K)NbO3 System Ceramics Substituted with BNKZ (BNKZ치환된 (Na,K)NbO3계 세라믹스의 미세구조 및 압전 특성)

  • Han, Jong-Dae;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.637-640
    • /
    • 2017
  • In this study, $(1-x)(Na_{0.52}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3-x(Bi_{0.5}(Na_{0.7}K_{0.3})_{0.5}ZrO_3$ ceramics were fabricated by BNKZ substitution using a conventional solid-state method to develop excellent lead-free piezoelectric ceramics for piezoelectric actuators; their dielectric and piezoelectric properties were then investigated. All specimens were in the orthorhombic phase. $NKL-NSTO_3$ ceramics with x=0.01 showed excellent piezoelectric properties. The density (${\rho}$), piezoelectric charge constant ($d_{33}$), planar piezoelectric coupling coefficient ($k_p$), mechanical quality factor ($Q_m$), and dielectric constant (${\varepsilon}_r$) had optimized values of $4.56g/cm^3$, 208 pC/N, 0.43, 96, and 975, respectively.

A Realization on the Dualband VCO Using T-Junction Switching Circuit (T-Junction 스위칭 회로를 이용한 이중 대역 전압제어 발진기 구현)

  • Oh Icsu;Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.105-110
    • /
    • 2005
  • In this paper, a new technique to reduce the phase noise in microwave oscillators is proposed using the resonant characteristics of the Photonic Bandgap(PBG). We applied PBG structure to ground of the microstrip line resonator with the low Q(Quality factor). Therefore, we improved about 10 dBc in contrast to phase noise characteristic of the conventional microstrip line oscillator at 2.4 GHz @ 100 MHz offset. Output power is 7.09 dBm.

Electrically Enhanced Readout System for a High-Frequency CMOS-MEMS Resonator

  • Uranga, Arantxa;Verd, Jaume;Lopez, Joan Lluis;Teva, Jordi;Torres, Francesc;Giner, Joan Josep;Murillo, Gonzalo;Abadal, Gabriel;Barniol, Nuria
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.478-480
    • /
    • 2009
  • The design of a CMOS clamped-clamped beam resonator along with a full custom integrated differential amplifier, monolithically fabricated with a commercial 0.35 ${\mu}m$ CMOS technology, is presented. The implemented amplifier, which minimizes the negative effect of the parasitic capacitance, enhances the electrical MEMS characterization, obtaining a $48{\times}10^8$ resonant frequency-quality factor product ($Q{\times}f_{res}$) in air conditions, which is quite competitive in comparison with existing CMOS-MEMS resonators.

Development of TEM Coil for Animal Experiments at 3T MRI System

  • Chu, Myung-Ja;Choe, Bo-Young;Kim, Kyung-Nam;Chung, Sung-Taek;Oh, Chang-Hyun;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.365-366
    • /
    • 2002
  • A novel TEM resonator coil was developed for the imaging of small animals. The functional elements of the TEM resonator were 8 inner conductors, distributed in a cylindrical pattern and connected at the ends with capacitors to the cylindrical outer shield. The TEM resonator coil with cavity elements was robust to the surrounding influences due to the self-shielding structure. The TEM resonator coil with high Q factor could provide high quality MR images at 3.0T MRI system. Also, the TEM resonator coil has an advantage for a fine tune with length adjustment of each cavity elements. Thus, The TEM resonator coil at 3.0T, even higher field could be used in the research studies.

  • PDF

Implementation of a T-DMB Single Element Cavity Filter Using HFSS (HFSS를 이용한 T-DMB용 단일소자 공동여파기 구현)

  • Go, Nam-Gyu;Son, Tae-Ho;Lee, Yong-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.157-162
    • /
    • 2011
  • In this study, we design and implement a cavity filter for the Korea T-DMB broadcasting transmitter station and repeater system. HFSS 3 dimensional field simulation tool is used for this study. T-DMB filter has to be high quality factor Q, and cavity filter is applying in T-DMB system due to high handling power. We use HFSS simulation tool for design to obtain exact resonant frequency with easy design. A cavity filter is implemented based on the simulated results, and test results are compared with simulations. Measured resonant frequency and bandwidth are 211.8MHz and 0.1MHz, and correspond with design values.

X-band CMOS VCO for 5 GHz Wireless LAN

  • kim, Insik;Ryu, Seonghan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.172-176
    • /
    • 2020
  • The implementation of a low phase noise voltage controlled oscillator (VCO) is important for the signal integrity of wireless communication terminal. A low phase noise wideband VCO for a wireless local area network (WLAN) application is presented in this paper. A 6-bit coarse tune capacitor bank (capbank) and a fine tune varactor are used in the VCO to cover the target band. The simulated oscillation frequency tuning range is from 8.6 to 11.6 GHz. The proposed VCO is desgned using 65 nm CMOS technology with a high quality (Q) factor bondwire inductor. The VCO is biased with 1.8 V VDD and shows 9.7 mA current consumption. The VCO exhibits a phase noise of -122.77 and -111.14 dBc/Hz at 1 MHz offset from 8.6 and 11.6 GHz carrier frequency, respectively. The calculated figure of merit(FOM) is -189 dBC/Hz at 1 MHz offset from 8.6 GHz carrier. The simulated results show that the proposed VCO performance satisfies the required specification of WLAN standard.

Analysis of Driving Characteristics by Putting Voltage of Charged Particle Type Display Device (대전입자형 디스플레이 소자의 충전전압에 따른 구동특성 분석)

  • Kim, Jin-Sun;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.48-52
    • /
    • 2012
  • The charged particle type display device is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source. The charged particle is important factor for driving of the display and quantity of charge per mass of the charged particle determines the driving voltage, contrast ratio, response time, etc. But it is easy for the charged particles to be damaged in the putting process of the display and the damages cause lumping phenomenon of the charged particles. Because the lumping phenomenon makes high driving voltage, low quality of optical properties, short life time, etc, so the charged particles must be filled by stable putting methods. In this paper, we filled the charged particles into the panels by electric fields to improve the electrical and optical characteristics of the display. Also, we analyzed the driving characteristics of the charged particles according to the applied putting voltages.

Microwave Dielectric Properties of the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ Ceramics with Sintering Temperature (소결온도에 따른 (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ 세라믹스의 마이크로파 유전 특성)

  • 최의선;김재식;이문기;류기원;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.459-463
    • /
    • 2004
  • In this study, the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ ceramics were investigated to obtain the improved dielectric properties of a high temperature stability and a sintering temperature of less than $900^{\circ}C$ which was necessary for the LTCC. According to the X-ray diffraction patterns of the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$(x=0∼1) ceramics, the columbite structure of $TiTe_3O_{8}$ and ilmenite structure of $MgTiO_3$ were coexisted. Increasing the $MgTiO_3$ mole ratio(x), the density and dielectric constant were decreased and temperature coefficient of resonant frequency was moved to the negative direction and the quality factor was increased. In the case of the 0.6$TiTe_3O_{8}$-0.4$MgTiO_3$ ceramics sintered at $830^{\circ}C$ for 3hr., the microwave dielectric properties were $\varepsilon_{\gamma}$=29.3, Q${\times}$$f_{\gamma}$=39.600GHz and $\tau$$_{f}$=+9.3ppm/$^{\circ}C$.

A Study of the Estimation Method for the Dielectric Properties of Dielectrics in Millimeter Wave Range using Bethe's Small Hole Coupling (Bethe's Small Hole Coupling을 이용한 유전체의 밀리미터파대 유전특성 평가방법에 관한연구)

  • 이홍열;전동석;한진우;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1085-1089
    • /
    • 2002
  • The circular cavity resonator which can measure the dielectric properties of dielectrics in the Ka-band(26.5GHz∼400Hz) frequency range was designed and fabricated. A structure of the resonator is divided into two equal parts of the length and the dielectric plate sample is placed between two halves. Exciting and detecting of the resonator is Performed by WR28 rectangular waveguides using Bethe's small hole coupling. The GaAs plate sample, whose performance is known to be 13 in millimeter wave range, was used for the verification of the performance of the fabricated circular cavity resonator In the measurement of GaAs single crystal using that resonator, the resonant frequency of the dominant TE$\sub$011/ mode, the permittivity and Q${\times}$f$\sub$0/ were measured as 26.69GHz, 12.9 and 124,000GHz, respectively.