• Title/Summary/Keyword: Quality Element

Search Result 1,560, Processing Time 0.026 seconds

Rigid-Plastic Finite Element Analysis for Forging Process Design of a Hollow Flange

  • Bae, Sung-Woo;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Hollow flange-shaped parts rue widely used in transportation systems. For good quality products, in general, design of preforms and die shapes for a progressive forging process is an important issue. For the design of die shapes for the forging process of a hollow flange, computer simulations Were earned out using the rigid-plastic finite element method. Forging defects like folding were seen in the vicinity of die corners at the typical shape ratios of upper and lower dies Die shape ratios at which the forging defect could occur during the extrusion-forging process of the hollow flange were investigated. The results might be efficiently used for the proper design of perform shapes, die shapes, and forging processes.

  • PDF

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Tool Design in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio by the Finite Element Analysis - Part I. Tool Design (유한요소해석을 이용한 세장비가 큰 직사각컴 다단계 성형공정의 금형설계 - Part I. 금형설계)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.144-150
    • /
    • 2001
  • Tool design is introduced in a multi-stage rectangular cup drawing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial tool design. The analysis reveals that the difference of the drawing ratio and the irregular contact condition produces non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure.

  • PDF

The Study of Sheet Hydro-Mechanical Forming Process for Aluminum Alloy Sheets by Experiment and Finite Element Analysis (알루미늄 판재 적용 십자형 액압성형 공정의 해석 및 실험적 고찰)

  • Shin, Dong-Woo;Yoon, Young-Sik;Kim, Dong-Ok;Ryu, Yong-Mun;Han, Beom-Suck;Gang, Dae-Geon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1000-1009
    • /
    • 2008
  • Hydro-mechanical forming process has numerous advantages compared to those of a conventional deep drawing process such as an excellent surface quality and low costs of dies. In fact, Hydro-mechanical forming is a desirable forming process for producing complex parts in automotive body components, and it is an excellent candidate for the forming process of aluminum panels. In this research, Hydro-mechanical forming process with a cross shape punch has been studied for Al-Si-Mg alloy sheets. Finite element analysis by LS-Dyna has predicted the deep drawing depth of the aluminum sheets, and the experiment has confirmed that result. Put Abstract text here.

  • PDF

Finite Element Analysis for Shot Blasting Process Optimization of Stainless Steel (유한요소해석을 이용한 스테인리스 스틸의 쇼트 블라스팅 공정 최적화)

  • Song, Seung Youp;Park, Junyoung;Kim, Jun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • A shot blasting process is to improve the surface quality of stainless steels. The process is similar to a well-known shot peening that is used to strengthen the surface via the residual stress. In the shot blasting process, it is important to decide many parameters, such as the size, incident angle and velocity of shot balls, to effectively get rid of the iron oxide on the surface of stainless steels. In this study, the simulation of the shot blasting process is carried out by a finite element software, which can help to find out the optimal design parameters to cause the delamination of the iron oxide from the stainless steel substrate. The results obtained are also compared to those of the discrete element method to verify them.

FEM Analysis of Void Closure Behavior during Open Die Forging of Rectangular Billets (사각 빌렛 자유단조시 내부기공폐쇄거동 유한요소해석)

  • 천명식;류종수;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Finite element analysis of open die forging process to make rectangular billet has been performed in this study. Three dimensional rigid-plastic finite element method was used to analyze the effects of process variables, forging pass design and die configurations on the void closure phenomena to maximize the internal deformation for better structural homogeneity and center-line consolidation of the rectangular billet. The effect of anvil width ratio, anvil pitch, anvil shape and number of pass has been estimated by the degree of void closure ratio. Although it is difficult to optimize process parameters in the operational environments, favourable process conditions are suggested for better product quality.

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of a Hot Square Die Extrusion with Flow Guide (플로우가이드를 고려한 평금형 열간 압출의 3차원 강-점소성 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.138-144
    • /
    • 1996
  • In square die extrusion, flow guide and ide land play important roles for controlling the metal flow in die design. In the present work, the flow guide and the die land are considered for the die construction. Based on ALE description , rigid-viscoplastic finite element analysid is carried out to assess the effects of process and die design parameters. The thermal state affects greatly the product quality in hot extrusion. in the present work, the temperature distribution is also analyzed in theframwork of rigid-viscoplastic finite element computation. As a computational example, hot square die extrusion with flow guide and die land has been analyzed for the profile of a H section.

  • PDF

Quality Improvement for Crimping Process of Electrical Connector Using FEM Analysis (유한요소해석을 통한 전기 커넥터의 압착 품질 향상)

  • Yin, Z.H.;Park, J.G.;Choi, H.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • This paper covers finite element simulations to evaluate the terminal crimping process of automobile electrical connector. Crimping is a classical technology process to ensure the electrical and the mechanical link between a wire and a terminal. Numerical modeling of the process is helpful to choose and to optimize the dimensions of the crimping part of the connector. In this paper, we discuss a 2D simulation of the crimping process, using explicit finite element methods (ABAQUS/Explicit) and we compare the results with experimental data from the industrial process of crimping (crimping height, crimping width and compressibility). The explicit method is preferred for the modeling of multi-contact problems, in spite of the quasi-static process of crimping. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

Finite Element Analysis of Powdering of Hot-dip Galvannenled Steel using Damage Model (합금화 용융아연 도금강판의 가공시 손상모델을 이용한 도금층 파우더링에 관한 유한요소 해석)

  • Kim, D.W.;Kim, S.I.;Jang, Y.C.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.215-222
    • /
    • 2007
  • Coating of Hot-dip galvannealed steel consists of various Fe-Zn intermetallic compounds. Since the coating is hard and there for is very brittle, the surface of steel sheet is easy to be ruptured during second manufacturing processing. This is called as powdering. In addition, forming equipment might be polluted with debris by powdering. Therefore, various research have been carried out to prohibit powdering fur improving the quality of GA steel. This paper carried out finite element analysis combined with damage model which simulate the failure of local layer of hot-dip galvannealed steel surface during v-bending test. Since the mechanical property of intermetallic compound was unknown exactly, we used the properties calculated from measurements. The specimen was divided into substrate, coating layer and interface layer. Local failure at coating layer or interface layer was simulated when elemental strain reached a prescribed strain.

  • PDF

A Study on the Optimal Design of the Brake Tube-End for Automobiles (승용차용 브레이크 Tube-End의 최적설계에 관한 연구)

  • 한규택;박정식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF