• Title/Summary/Keyword: Quadratic equation

Search Result 537, Processing Time 0.032 seconds

MEAN-VALUE PROPERTY AND CHARACTERIZATIONS OF SOME ELEMENTARY FUNCTIONS

  • Matkowski, Janusz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.263-273
    • /
    • 2013
  • A mean-value result, saying that the difference quotient of a differentiable function in a real interval is a mean value of its derivatives at the endpoints of the interval, leads to the functional equation $$\frac{f(x)-F(y)}{x-y}=M(g(x),\;G(y)),\;x{\neq}y$$, where M is a given mean and $f$, F, $g$, G are the unknown functions. Solving this equation for the arithmetic, geometric and harmonic means, we obtain, respectively, characterizations of square polynomials, homographic and square-root functions. A new criterion of the monotonicity of a real function is presented.

Riccati Equation Approach to $\textrm{H}_\infty$ Robust Performance Problem for Descriptor Form System

  • Shen, Tielong;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.95-99
    • /
    • 1993
  • In this paper, we discuss H$_{\infty}$ robust performance problem for uncertain system described in a descriptor form. We show that the method based on Riccati equation can be extended to solve this problem. First, such a sufficient condition is given that the system described in a descriptor form is quadratic stable and H$_{\infty}$ norm of a specified transfer function is less than a given level. Using this result, a state feedback law which ensures H$_{\infty}$ robust performance of closed loop system is derived based on a positive definite solution of a Riccati equation. This result shows that a solution of the problem can be also obtained by solving H$_{\infty}$ standard problem for an extended plant. Finally, a design example and simulation results will be given.ven.

  • PDF

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control (QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

A New Estimated Strength Equation of Concrete by Penetration Resistance Test (관입시험법에 의한 콘크리트의 압축강도 추정식)

  • 권영웅;신정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.643-646
    • /
    • 2003
  • This study concerns the new estimated strength equation of concrete by penetration test. There are not only few estimate strength equations of concrete, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. In this study, there performed a series of test for one year and estimated strength equation of concrete as follows; Linear: fck =3.38d - 95.1 ($$r^2$$=88.6%) Quadratic: fck =0.188$$d^2$$- 10.76d + 166.3 ($$r^2$$=96.7%) here, fck : estimated compressive strength of concrete by Mpa d: exposed probe length by mm.

  • PDF

Performance Analysis of Multirate LQG Control (멀티레이트 LQG 제어 기법의 성능 비교 분석)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

An Algebraic Approach to Optimal Control using STWS (STWS를 이용한 최적제어의 대수적 접근에 관한 연구)

  • 오현철;김윤상;안두수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.561-566
    • /
    • 1998
  • This paper presents an algebraic approach to optimal control for time invariant continuous system using STWS(single term Walsh series). In optimal control, it is well known that the design problem with quadratic performance criteria often involves the determination of time-varying feedback gain matrix by solving the matrix nonlinear Riccati equation and of command signal by solving the integral equation, which makes design procedure quite difficult. Therefore, in order to resolve this problem, this paper is introduced to STWS. In this paper, the time-varying feedback gains and command signals are determined by piecewise constant gains which can be easily obtained from algebraic equation using STWS.

  • PDF

Design of quadruple-clad, dispersion-flattened optical fibers with ultra-low dispersion at ${\lambda}=1.55{\mu}m$ (${\lambda}=1.55{\mu}m$에서 극저분산을 갖는 사중-클래드 평탄분산 광섬유의 설계)

  • 정석원;김창민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.140-152
    • /
    • 1995
  • Derived was the scalar wave equation of optical fibers. Based on the derived equation, the dispersion characteristics of arbitrarily profiled fibers were analyzed. We applied the 1-D FEM employing quadratic interpolation fucntions to solve the scalar wave equation. To find the optimum index distribution of a fiber that has the ultra-low total dispersion, we analyzed QC fibers as objects. Adding 2$_{nd}$ and 3$_{rd}$ clads to DC fiber, we investigated the change of dispersion characteristics. We found the QC fiber parameters for which the dispersion was ultra-low flattened, less than 0.5 ps/km.nm for ${\lambda}=1.4~1.6{\mu}m$, and the dispersion value was as low as 0.20 ps/km.nm at ${\lambda}=1.55{\mu}m$.

  • PDF