• Title/Summary/Keyword: Quadratic damping

Search Result 69, Processing Time 0.021 seconds

Damage assessment of frame structure using quadratic time-frequency distributions

  • Chandra, Sabyasachi;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.411-425
    • /
    • 2014
  • This paper presents the processing of nonlinear features associated with a damage event by quadratic time-frequency distributions for damage identification in a frame structure. A time-frequency distribution is a function which distributes the total energy of a signal at a particular time and frequency point. As the occurrence of damage often gives rise to non-stationary, nonlinear structural behavior, simultaneous representation of the dynamic response in the time-frequency plane offers valuable insight for damage detection. The applicability of the bilinear time-frequency distributions of the Cohen class is examined for the damage assessment of a frame structure from the simulated acceleration data. It is shown that the changes in instantaneous energy of the dynamic response could be a good damage indicator. Presence and location of damage can be identified using Choi-Williams distribution when damping is ignored. However, in the presence of damping the Page distribution is more effective and offers better readability for structural damage detection.

Design Procedure of Robust LQG/LTR Controller of TCSC for Damping Power System Oscillations (전력시스템 동요 억제를 위한 TCSC의 강인한 LQG/LTR 제어기 설계절차에 관한 연구)

  • Son, Kwang-Myoung;Lee, Tae-Gee;Jeon, In-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.30-39
    • /
    • 2002
  • This paper deals with the design of a robust LQC/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller of the TCSC for the power system oscillation damping enhancement. Designing LQG/LTR controller involves several design parameter adjustment processes for performance improvement. this paper proposes a systematic design parameter adjustment procedure which is suitable for robust multi-monde stabilization. The designed controller is verified by nonlinear power system simulation, which shows that the controller is effective for damping power system oscillations.

Design of an Active Damping Layer Using Topology Optimization (위상 최적화를 이용한 능동 감쇠층의 설계)

  • 김태우;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping (능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구)

  • 고성현;박현철;황운봉;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

Design of Active Mass Damper to Improve Seismic Performance Using Capacity Spectrum Method (내진성능 향상을 위한 능력스펙트럼법에 의한 능동제어기 설계)

  • 김형섭;민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.259-266
    • /
    • 2003
  • This paper begins with the seismic performance evaluation of an existing building, which exhibits the need of additional damping to reduce its response. Required damping ratio is found by capacity spectrum method to satisfy a target response. It is expressed with the design parameter of active mass damper by adopting Linear Quadratic Regulator, Optimal gains are obtained and then weighting matrices are found. Finally the seismic performance by added active mass damper is demonstrated, which satisfies the target response.

  • PDF

Vibration Control of Arc Type Shell using Active Constrained Layer Damping (능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구)

  • 고성현;박현철;박철휴;황운봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF

SELECTION OF DAMPING MODEL IN VIBRATION OF FLEXIBLE BEAMS

  • Kim, Hyun-Woo;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.578-583
    • /
    • 2007
  • Many papers have studied computer-aided simulations of elastic bodies undergoing large deflections and large deformations. But there have been few attempts to validate their numerical formulations used in these studies. The main aim of this paper is to validate the absolute nodal coordinate formulation (ANCF) by comparing the results to experimental measurements on beams. Physical experiments with a high-speed camera were carried out to capture the large displacement of the beam and to verify the results of computer simulations. To consider the damping forces, the Rayleigh's damping and quadratic damping are employed and compared to the experimental results, respectively. Numerical results obtained from computer simulations were compared with the results from the physical experiments according to the $1^{st}$ mode and the $2^{nd}$ mode of the beam, respectively.

  • PDF

Neural Network Based Rudder-Roll Damping Control System for Ship

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.4
    • /
    • pp.289-293
    • /
    • 2007
  • In this paper, new application of adaptive neural network to design a ship's Rudder-Roll Damping(RRD) control system is presented Firstly, the ANNAI neural network controller is presented. Secondly, new RRD control system using this neural network approach is developed. It uses two neural network controllers for heading control and roll damping control separately. Finally, Computer simulation of this RRD control system is carried out to compare with a linear quadratic optimal RRD control system; discussions and conclusions are provided. The simulation results show the feasibility of using ANNAI controller for RRD. Also, the necessity of mathematical ship model in designing RRD control system is removed by using NN control technique.

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • This paper presents vibration control performances of a commercial magnetorheological (MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending (FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation (LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

  • PDF