• Title/Summary/Keyword: Quadratic Strip Method

Search Result 11, Processing Time 0.029 seconds

Design of an ILQ Looper Controller for Rot Strip Mills (열간사상압연기의 루퍼시스템의 ILQ 제어기 설계)

  • Kim, Seong-Bae;Hwang, Lee-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1680-1689
    • /
    • 2002
  • This paper studies on the design of a looper control system for hot strip mill finisher using ILQ(Inverse Linear Quadratic optimal control) control method. The loopers are placed between each rolling stands and looper control plays an important role in regulating strip tension. The strip tension is controlled by raising and lowering the looper and by changing the speed of main work rolls. Firstly, it is shown from a nonlinear dynamic simulation that the strip tension is more influenced by difference of rolling speed than that of the looper angle. Secondly, a servo controller of the looper is designed using ILQ control method of which the characteristics and algorithms are simply introduced. Finally, the performances of the ILQ servo controller are compared with those of the LQI servo controller from computer simulation. In result, it is shown that the proposed ILQ servo controller has the better performances and robustness far parameter perturbations and disturbances than those of LQI controller.

An Application of Inverse Linear Quadratic Control to Strip Rolling Mill (철강 압연공정에의 ILQ(Inverse Linear Quadratic) 제어의 응용)

  • 최승갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.38-38
    • /
    • 2000
  • To fulfill recent requirements for high quality products in steel rolling process, fast responding and easily tunab control system is required and ILQ(Inverse Linear Quadratic) control system may be one of such alternatives. In this paper characteristics of ILQ control and its application to BUR(Back-Up-Roll) eccentricity in strip rolling mill is discussed and compared to polynomial control approaches. Also the rolling mill model and basic principle to control thickness of srip are introduced with control effect by polynomial methods.

  • PDF

Gain Scheduling for Hot Strip Mill

  • Park, Sung-Han;Ahn, Byoung-Joon;Park, Juy-Yong;Lee, Dong-Wook;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.4-129
    • /
    • 2001
  • The looper control of hot strip finishing mill is one of the most important control item in hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. There are many control schemes such as conventional, non-interactive, LQ(Linear Quadratic), Hinf and ILQ(Inverse Linear Quadratic), Adaptive(gain scheduling) control in the looper control system. In this paper, we present the modeling for the looper of a hot strip finishing mill to control the tension of the strip and suggest another control method.

  • PDF

Looper-Tension Control of Strip Top-Tail Parts for Hot Rolling Mills (열간압연공정의 스트립 선미단부 루퍼-장력 제어)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • This paper designs a looper-tension controller for strip top-tail parts in hot strip finishing mills. A three-degree linear model of the looper-tension system is derived by a Taylor's linearization method, where the actuator's dynamics are ignored because of their fast responses. A feedforward shaping controller for the strip top part and a feedforward model reference controller for the strip tail part are respectively designed, they are combined with an ILQ(Inverse Linear Quadratic optimal control) feedback controller for the strip middle part. It is shown from by a computer simulation that the proposed controller is very effective to the strip top-tail parts including the middle part.

Linear quadratic regulators of two-time scale systems with eigenvalue placement in a vertical strip (수직스트립으로의 고유치배치에 의한 두시간스케일 시스템에서의 선형2차 동조기 구현)

  • 엄태호;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.198-202
    • /
    • 1987
  • The regulator problem can be considered as some impulsive disturbance rejection one. In this point of view, the rate of decay is one of important factors for regulation and depends on how negative the real parts of the eigenvalues of closed-loop system. The algorithm that the closed-loop system has eigenvalues lying within a vertical. strip is useful for rapid disturbance rejection. This paper presents a design method for a linear quadratic regulator of two-time scale system with eigenvalues in a vertical strip by use of time-scale separation property.

  • PDF

Quadratic strip theory for high-order dynamic behavior of a large container ship with 3D flow effects

  • Heo, Kyeong-uk;Koo, Weoncheol;Park, In-Kyu;Ryue, Jungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude-Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.

On the Springing Response of Ships with Shallow Draft and Large Breadth (천홀수 광폭선의 스프링잉 응답 해석)

  • 정종진;박인규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.55-60
    • /
    • 2004
  • This paper describes the estimation method of hull girder response of ships due to springing. To this aim, nonlinear springing effect on the hull girder is evaluated including vertical, horizontal, and torsional deformation of the hull. The Timoshenko beam model is used to calculate the stress distribution on the hull girder. The quadratic strip method is employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, 'rigid lid'is adopted on the hull free surface level and hydrodynamic coefficients are interpolated for asymptotic values. The results of example calculation show a reasonable agreement with previous results for both symmetric and anti-symmetric responses.

An Estimation of Springing Responses for Recent Ships

  • Park, In-Kyu;Kim, Jong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.58-63
    • /
    • 2005
  • The estimation of springing responses for recent ships is carried out, and application to a ship design is described. To this aim, springing effects on hull girder were re-evaluated, including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder, using the superposition method. The quadratic strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level, and addedasymptotic interpolation along the high frequency range. Several applications were carried out on the following existing ships: The Bishop and Price's container ship, S-175 container ship, large container, VLCC, and ore carrier. One of them is compared with the ship measurement result, while another with that of the model test. The comparison between the analytical solution and the numerical solution for a homogeneous beam-type artificial ship shows good agreement. It is found that Most springing energy comesfrom high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega$$\^{-3}$ instead of $\omega$$\^{-4}$ or $\omega$$\^{-5}$ for the springing calculation.

Approximate Model of Thrust of Pair-Cross Mill using Axiomatic Design and Response Surface Model (공리설계와 반응표면모델에 의한 형상제어 압연기의 추력모델 개발)

  • Yoo, Jung-Hun;Kang, Yeong-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1270-1275
    • /
    • 2005
  • Rolling process to fabricate a strip with even thickness is significant to enhance the quality of the strip. The thickness of a strip can be effectively controlled by pair-cross mills. However, pair-cross mill generates thrust in the axial direction of roller and causes skewness, deflection, twist and even accidental roll chock failure. Therefore, accurate estimation of the thrust of the pair-cross mill during rolling process is necessary to monitor the failure of roll and the quality of products. An empirical equation given by Mitsubishi Heavy Industry (MHI) is hitherto employed, where the thrust is expressed in terms of rolling force, reduction ratio and crossed angle. However it turns out that the MHI empirical equation provides somehow inaccurate and unsuitable thrust in practical rolling processes. Moreover, we learn that three parameters involved in MHI equation are coupled each other. In this paper, axiomatic design principle is employed to select appropriate parameters involved in approximate equation in order to make parameters uncoupled. A quadratic equation using response surface method with new parameters is suggested. The accuracy of the approximate model is examined by comparing with real experimental data.