• Title/Summary/Keyword: Quadratic Regression

Search Result 248, Processing Time 0.027 seconds

Effects of Microground Coffee on the Quality Characteristics and Acceptability of Instant Coffee supplemented with Probiotics (프로바이오틱스가 보강된 인스턴트커피의 품질 특성과 기호도에 미세분쇄 원두커피가 미치는 영향)

  • Lim, Sang Ho;Han, Sung Hee;Ko, Bong Soo
    • Culinary science and hospitality research
    • /
    • v.24 no.1
    • /
    • pp.140-150
    • /
    • 2018
  • In this study, effects of microground coffee on the quality characteristics and acceptability of instant coffee with probiotics were investigated. A central composite design with two factors (roasting degree and dose of microground coffee) was used and ranges of roasting degree and dose were 30~50 (L value) and 5~10% respectively. Aroma preference, sweetness intensity, bitterness intensity, acidity intensity, body intensity and overall acceptability were evaluated as sensory characteristics and quadratic regression models of all the properties were significant. Especially in aroma preference and overall acceptability, the higher roasting degree and dose of microground coffee, the more aroma preference and overall acceptability of the coffee increased. And this results accorded with the object of this study to increase aroma preference and overall acceptability by blending microground coffee with instant coffee. On the other hand, 129 of aroma compounds were detected in instant coffee with microground coffee but 2,5-dimethyl-pyrazine, ethyl-pyrazine and furfural were significant in quadratic regression models. The optimal conditions were predicted by response surface methodology and desirability function approach and the optimal conditions of roasting degree and dose of microground coffee were 30(L value), 8.4%(w/w) respectively to maximize 2 sensory characteristics (overall preference, aroma preference) and 3 aroma components (2,5-dimethyl-pyrazine, ethyl-pyrazine, furfural).

Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors

  • Kang, Seong Soo;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.

A Study on the Estimation Method of Daily Load Curve for the Optimization Design and Economic Evaluation of Stand-alone Microgrids Based on HOMER Simulation in Off-Grid Limiting the Supply of Electricity (제한급전하는 오프그리드의 독립형 마이크로그리드 최적 설계 및 경제성 평가를 위한 일부하곡선 추정 방안에 관한 연구)

  • Nam, Yong-Hyun;Youn, Seok-Min;Kim, Jung-Hoon;Hwang, Sung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • There is a growing interest in various microgrid solutions that supply electricity 24 hours a day to off-grid areas where are not connected with the main grid, and Korea has many positive effects by constructing overseas microgrids as a country operating the emission trading scheme. Since it is not clear how to obtain load curves that is one of the inputs of the HOMER used to design a microgrid optimization plan, or it is necessary to examine whether electricity is supplied to the peak load level of the areas where have not received the electricity benefits from the viewpoint of the demand management, a methodology should be developed to know the load composition ratio and the shape of the daily load curve. In this paper, the relative coefficient and average load information for each load group obtained from the survey are used besides peak load and total average load. A mathematical model is proposed to derive the load composition ratio in the form of a Quadratic Programming and the load forecasting is performed using simple linear regression with future indicators. The effectiveness of the proposed method is confirmed for the Philippine island region supported by Korea Energy Agency and the Asian Development Bank.

Prediction of Fabric Drape Using Artificial Neural Networks (인공신경망을 이용한 드레이프성 예측)

  • Lee, Somin;Yu, Dongjoo;Shin, Bona;Youn, Seonyoung;Shim, Myounghee;Yun, Changsang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.978-985
    • /
    • 2021
  • This study aims to propose a prediction model for the drape coefficient using artificial neural networks and to analyze the nonlinear relationship between the drape properties and physical properties of fabrics. The study validates the significance of each factor affecting the fabric drape through multiple linear regression analysis with a sample size of 573. The analysis constructs a model with an adjusted R2 of 77.6%. Seven main factors affect the drape coefficient: Grammage, extruded length values for warp and weft (mwarp, mweft), coefficients of quadratic terms in the tensile-force quadratic graph in the warp, weft, and bias directions (cwarp, cweft, cbias), and force required for 1% tension in the warp direction (fwarp). Finally, an artificial neural network was created using seven selected factors. The performance was examined by increasing the number of hidden neurons, and the most suitable number of hidden neurons was found to be 8. The mean squared error was .052, and the correlation coefficient was .863, confirming a satisfactory model. The developed artificial neural network model can be used for engineering and high-quality clothing design. It is expected to provide essential data for clothing appearance, such as the fabric drape.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

Upgraded quadratic inference functions for longitudinal data with type II time-dependent covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.211-218
    • /
    • 2014
  • Qu et. al. (2000) proposed the quadratic inference functions (QIF) method to marginal model analysis of longitudinal data to improve the generalized estimating equations (GEE). It yields a substantial improvement in efficiency for the estimators of regression parameters when the working correlation is misspecified. But for the longitudinal data with time-dependent covariates, when the implicit full covariates conditional mean (FCCM) assumption is violated, the QIF can not provide more consistent and efficient estimator than GEE (Cho and Dashnyam, 2013). Lai and Small (2007) divided time-dependent covariates into three types and proposed generalized method of moment (GMM) for longitudinal data with time-dependent covariates. They showed that their GMM type II and GMM moment selection methods can be more ecient than GEE with independence working correlation (GEE-ind) in the case of type II time-dependent covariates. We develop upgraded QIF method for type II time-dependent covariates. We show that this upgraded QIF method can provide substantial gains in efficiency over QIF and GEE-ind in the case of type II time-dependent covariates.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

Quadratic inference functions in marginal models for longitudinal data with time-varying stochastic covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.651-658
    • /
    • 2013
  • For the marginal model and generalized estimating equations (GEE) method there is important full covariates conditional mean (FCCM) assumption which is pointed out by Pepe and Anderson (1994). With longitudinal data with time-varying stochastic covariates, this assumption may not necessarily hold. If this assumption is violated, the biased estimates of regression coefficients may result. But if a diagonal working correlation matrix is used, irrespective of whether the assumption is violated, the resulting estimates are (nearly) unbiased (Pan et al., 2000).The quadratic inference functions (QIF) method proposed by Qu et al. (2000) is the method based on generalized method of moment (GMM) using GEE. The QIF yields a substantial improvement in efficiency for the estimator of ${\beta}$ when the working correlation is misspecified, and equal efficiency to the GEE when the working correlation is correct (Qu et al., 2000).In this paper, we interest in whether the QIF can improve the results of the GEE method in the case of FCCM is violated. We show that the QIF with exchangeable and AR(1) working correlation matrix cannot be consistent and asymptotically normal in this case. Also it may not be efficient than GEE with independence working correlation. Our simulation studies verify the result.

Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture (자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계)

  • Park, Ho-Sung;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF