• Title/Summary/Keyword: Quadrant bar phantom

Search Result 6, Processing Time 0.02 seconds

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1947-1954
    • /
    • 2021
  • In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.

Evaluation of Image Quality by Parameter Change in Onco Flash (Onco Flash에서 매개변수 변화에 따른 영상의 질 평가)

  • Cha, Eun-Sun;Noh, Ik-Sang;Kim, Ki;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • Purpose: Many companies developed a lot of programs with continuous effort for program upgrading. With this acquire superior image quality for the purpose of quick examination and progress in spatial resolution. This study was to obtained clinical usefulness on a appropriate parameter of FWHM for speed and alpha value for superior image quality. Materials and Methods: Gamma camera by Siemens (e.cam) and spatial resolution phantom and four quadrant bar phantom used. Compared for FWHM by changed scan speed 15, 20, 25, 30, 35, 40 cm/min in scatter and non scatter in Onco Flash of spatial resolution phantom. Visual evaluation of count rate and bar phantom image for increased of alpha value of 10% in 0~100%. Results: FWHM by the scan speed was 9.37, 9.40, 9.28, 9.30, 9.31, 9.53 mm in the scatter. Count rate increased alpha value 10% increased. Visual evaluation was suitable to below 30%, Therefore spatial resolution improved on FWHM at the scan speed 25~35 cm/min applying for alpha value 30% in Onco Flash was average 9.3 mm less than FWHM of below 15 cm/min and above 40 cm/min. Conclusion: We found on appropriate parameter to progress of image quality. And there be a useful guideline for you that appropriate scan speed on vary in parameters of reduction on examination time and advancing image quality.

  • PDF

Evaluation of Image Quality by Using Various Detector Materials according to Density : Monte Carlo Simulation Study (몬테카를로 시뮬레이션 기반 밀도에 따른 다양한 검출기 물질을 적용한 획득 영상 평가)

  • LEE, Na-Num;Choi, Da-Som;Lee, Ji-Su;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.459-464
    • /
    • 2021
  • The detector performance is important role in acquiring the gamma rays from patients. Among parameters of detector performances, there is density, which relates to respond to gamma rays. Therefore, we confirm the detection efficiency according to various detector materials based on the density parameter using GATE (geant4 application for emission tomography) simulation tool. The NaI (density: 3.67 g/cm3), CZT (Cadimium Zinc Telluride) (density: 5.80 g/cm3), CdTe (Cadmium Telluride) (5.85 g/cm3), and GAGG (Gadoinium Aluminum Gallium Garnet) (density g/cm3) were used as detector materials. In addition, the point source and quadrant bar phantom, which is modeled for 0.5, 1.0, 1.5, and 2.0 mm thicknesses, were modeled to confirm the quatitative analysis using sensitivity (cps/MBq) and the full width at half maximum (FWHM, mm) at the 2.0 mm bar thickness containing visual evaluation. Based on the results, the sensitivity for NaI, CZT, CdTe, and GAGG detector materials were 0.12, 0.15, 0.16, and 0.18 cps/MBq. In addition, the FWHM for quadrant bar phantom in the 2.0 mm bar thickness is 3.72, 3.69, 3.70, and 3.73 mm for NaI, CZT, CdTe, and GAGG materials, respectively. Compared with performance of detector materials according to density, the high density can improve detection efficiency in terms of sensitivity and mean count. Among these detector materials, the GAGG material is efficient for detection of gamma rays.

Usefulness in Evaluation of NM Image which It Follows in Onco. Flash Processing Application (Onco. Flash Processing 적용에 따른 핵의학 영상의 유용성 평가)

  • Kim, Jung-Soo;Kim, Byung-Jin;Kim, Jin-Eui;Woo, Jae-Ryong;Kim, Hyun-Joo;Shin, Heui-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Purpose: The image processing method due to the algorism which is various portion nuclear medical image decision is important it makes holds. The purpose of this study is it applies hereupon new image processing method SIEMENS (made by Pixon co.) Onco. flash processing reconstruction and the comparison which use the image control technique of existing the clinical usefulness it analyzes with it evaluates. Materials & Methods: 1. Whole body bone scan-scan speed 20 cm/min, 30 cm/min & 40 cm/min blinding test 2. Bone static spot scan-regional view 200 kcts, 400 kcts for chest, pelvis, foot blinding test 3. 4 quadrant-bar phantom-20000 kcts visual evaluation 4. LSF-FWHM resolution comparison ananysis. Results: 1. Raw data (20 cm/min) & processing data (30 cm/min)-similar level image quality 2. Low count static image-image quality clearly improved at visual evaluation result. 3. Visual evaluation by quadrant bar phantom-rising image quality level 4. Resolution comparison evaluation (FWHM)-same difference from resolution comparison evaluation Conclusion: The study which applies a new method Onco. flash processing reconstruction, it will be able to confirm the image quality improvement which until high level is clearer the case which applies the method of existing better than. The new reconstruction improves the resolution & reduces the noise. This enhances the diagnostic capabilities of such imagery for radiologists and physicians and allows a reduction in radiation dosage for the same image quality. Like this fact, rising of equipment availability & shortening the patient waiting move & from viewpoint of the active defense against radiation currently becomes feed with the fact that it will be the useful result propriety which is sufficient in clinical NM.

  • PDF

Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients (유방암 환자의 감시림프절 생검을 위한 림포신티그라피와 실사영상의 합성)

  • Jeong, Chang-Bu;Kim, Kwang-Gi;Kim, Tae-Sung;Kim, Seok-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • This paper presents a method that registers a lymphoscintigraphy to the real image captured by a CMOS camera, which helps surgeons to easily and precisely detect sentinel lymph nodes for sentinel lymph node biopsy in breast cancer patients. The proposed method consists of two steps: pre-matching and image registration. In the first step, we localize fiducial markers in a lymphoscintigraphy and a real image of a four quadrant bar phantom by using image processing techniques, and then determines perspective transformation parameters by matching with the corresponding marker points. In the second step, we register a lymphoscintigraphy to a real images of patients by using the perspective transformation of pre-matching. To examine the accuracy of the proposed method, we conducted an experiment with a chest mock-up with radioactive markers. As a result, the euclidean distance between corresponding markers was less than 3mm. In conclusion, the present method can be used to accurately align lymphoscintigraphy and real images of patients without attached markers to patients, and then provide useful anatomical information on sentinel lymph node biopsy.

A Study on the Determination of Scan Speed in Whole Body Bone Scan Applying Oncoflash (Oncoflash를 적용한 전신 뼈 영상 검사의 스캔 속도 결정에 관한 연구)

  • Yang, Gwang-Gil;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.56-60
    • /
    • 2009
  • Purpose: The various studies and efforts to develop program are in progress in the field of nuclear medicine for the purpose of reducing scan time. The Oncoflash is one of the programs used in whole body bone scan which allows to maintain the image quality while to reduce scan time. When Those applications are used in clinical setting, both the image quality and reduction of scan time should be considered, therefore, the purpose of this study was to determine the criteria for proper scan speed. Materials and Methods: The subjects of this study were the patients who underwent whole body bone scan at the departments of nuclear medicine in the Asan Medical Center located in Seoul from 1st to 10th, July, 2008. The whole body bone images obtained in the scan speed of 30cm/min were classified by the total counts into under 800 K, and over 800 K, 900 K, 1,000 K, 1,500 K, and 2,000 K. The image quality were assessed qualitatively and the percentages of those of 1,000K and under of total counts were calculated. The FWHM before and after applying the Oncoflash were analyzed using images obtained in $^{99m}Tc$ Flood and 4-Quadrant bar phantom in order to compare the resolution according to the amount of total counts by the application of the Oncoflash. Considering the counts of the whole body bone scan, the dosed 2~5 mCi were used. 152 patients underwent the measurement in which the counts of Patient Postioning Monitor (PPM) were measured with including head and the parts of chest which the starting point of whole body bone scan from 7th to 26th, August, 2008. The correlations with total counts obtained in the scan speed of 30cm/min among them were analyzed (The exclusion criteria were after over six hours of applying isotopes or low amount of doses). Results: The percentage of the whole body bone image which has the geometric average of total counts of under 1,000K among them obtained in the scan speed of 30cm/min were 17.6%(n=58) of 329 patients. The qualitative analysis of the image groups according to the whole body counts showed that the images of under 1,000K were assessed to have coarse particles and increased noises. The analysis on the FWHM of the images before and after applying the Oncoflash showed that, in the case of PPM counts of under 3.6 K, FWHM values after applying the Oncoflash were higher than that before applying the Oncoflash, whereas, in the case of that of over 3.6 K, the FWHM after applying the Oncoflash were not higher than that before applying the Oncoflash. The average of total counts at 2.5~3.0 K, 3.1~3.5 K, 3.6~4.0 k, 4.1~4.5 K, 4.6~5.0 K, 5.1~6.0 K, 6.1~7.0 K, and 7.1 K over (in PPM) were $965{\pm}173\;K$, $1084{\pm}154\;K$, $1242{\pm}186\;K$, $1359{\pm}170\;K$, $1405{\pm}184\;K$, $1640{\pm}376\;K$, $1,771{\pm}324\;K$, and $1,972{\pm}385\;K$, respectively and the correlations between the counts in PPM and the total counts of image obtained in the scan speed of 30 cm/min demonstrated strong correlation (r=.775, p<.01). Conclusions: In the case of PPM coefficient over 3.6 K, the image quality obtained in the scan speed of 30cm/min and after applying the Oncoflash was similar to that obtained in the scan speed of 15 cm/min. In the case of total counts over 1,000 K, it is expected to reduce scan time without any damage on the image quality. In the case of total counts under 1,000 K, however, the image quality were decreased even though the Oncoflash is applied, so it is recommended to perform the re-image in the scan speed of 15 cm/min.

  • PDF