• Title/Summary/Keyword: Quad Tilt Propeller

Search Result 5, Processing Time 0.015 seconds

A Experimental Study of Aerodynamic Interference on Quad-Tilt Propeller UAV Wings in Forward Flight Condition (전진 비행하는 Quad-Tilt Propeller 형상 무인기 날개에서 나타나는 공력간섭 현상에 대한 실험적 연구)

  • Kim, Taewoo;Chung, Jindeog;Kim, Yangwon;Park, Cheolwan;Cho, Taehwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • In this study, wind tunnel test on Quad-Tilt Propeller which has tandem wings is carried out to analyze the aerodynamic interference effect of front wing and propeller on rear wing during forward flight. Using 6-axis balance system, forces and moments of whole aircraft were measured and using strain gauge at wing root, bending moments were measured to observe change of aerodynamic force of each wings. A 12-hole probe was used to measure the flow field in the wing and propeller wake. Flow characteristics were observed qualitatively through flow visualization experiment using tuft and smoke. To measure the aerodynamic interference by elements, the influence of front wing and propeller on rear wing was analyzed by changing the wings and propellers mount combination.

Downward Load Prediction and Reduction Strategy for QTP UAV

  • Park, Youngmin;Choi, Jaehoon;Lee, Hakmin;Kim, Cheolwan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • The propeller wake of tiltrotor-type aircrafts, such as TR-60 and quad tilt propeller (QTP) UAV, in hover substantially impinges the upper surface of the primary wing and generates a downward load. This load is directly proportional to the thrust of the propeller and reduces the available payload. Therefore, wing and nacelle mechanisms should be carefully designed to reduce downward load. This study conducted a numerical analysis of the rotating propeller in hover to predict the downward load of a QTP UAV. An unsteady three-dimensional Navier-Stokes solver was used along with a sliding mesh for the simulation of the rotating propeller. To reduce the downward load, the tilting mechanisms of the partial wing and nacelle were simultaneously introduced and numerically analyzed. Finally, the downward load was predicted by 14% of isolated propeller thrust; further, the downward load could be reduced by adopting the partial wing and nacelle tilting concept.

A Study on Longitudinal Flight Dynamics of a QTW UAV (QTW 무인항공기의 종축 비행동역학에 관한 연구)

  • Jung, Ji In;Hong, Sung Tae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • A Quad Tilt Wing UAV is a new concept hybrid UAV having the advantages of both fixed-wing and rotary-wing aircraft. This paper presents longitudinal flight dynamic characteristics of a Quad Tilt Wing UAV. The designed Quad Tilt Wing UAV is a configuration of a tandem wing type aircraft with an actuating motor and propeller mounted at each wing. Momentum theory is used to calculate the thrust, and nonlinear modeling is performed considering lift and drag generated by slip stream effect of propellers. Also, Force and moment variation at each tilting angle is considered. Static trim on longitudinal axis is analyzed via numerical simulation. Componentwise force contribution was analyzed at each trim mode. Dynamic characteristics were evaluated through eigenvalue analysis for a linear model at each flight mode. It is verified that longitudinal dynamic characteristics are changing from unstable to stable state by continuous transition of dominant poles.

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.