• Title/Summary/Keyword: QoS constraints

Search Result 121, Processing Time 0.025 seconds

A Study of Multicast Tree Problem with Multiple Constraints (다중 제약이 있는 멀티캐스트 트리 문제에 관한 연구)

  • Lee Sung-Ceun;Han Chi-Ceun
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.129-138
    • /
    • 2004
  • In the telecommunications network, multicasting is widely used recently. Multicast tree problem is modeled as the NP-complete Steiner problem in the networks. In this paper, we study algorithms for finding efficient multicast trees with hop and node degree constraints. Multimedia service is an application of multicasting and it is required to transfer a large volume of multimedia data with QoS(Quality of Service). Though heuristics for solving the multicast tree problems with one constraint have been studied. however, there is no optimum algorithm that finds an optimum multicast tree with hop and node degree constraints up to now. In this paper, an approach for finding an efficient multicast tree that satisfies hop and node degree constraints is presented and the experimental results explain how the hop and node degree constraints affect to the total cost of a multicast tree.

  • PDF

Optimal Power and Rate Allocation based on QoS for CDMA Mobile Systems (CDMA 이동통신시스템을 위한 QoS 기반 최적 전송출력/전송률 할당 체계)

  • 장근녕
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.1-19
    • /
    • 2003
  • This paper studies power and rate control for data users on the forward link of CDMA system with two cells. The QoS for data users is specified by delay and error rate constraints as well as a family of utility functions representing system throughput and fairness among data users. Optimal power and rate allocation problem is mathematically formulated as a nonlinear programming problem, which is to maximize total utility under delay and error rate constraints, and optimal power and rate allocation scheme (OPRAS) is proposed to obtain a good solution in a fast time. Computational experiments show that the proposed scheme OPRAS works very well and increases total utility compared to the separate power and rate allocation scheme (SPARS) which considers each cell individually.

Proportional Fair Scheduling Algorithm in OFDMA-Based Wireless Systems with QoS Constraints

  • Girici, Tolga;Zhu, Chenxi;Agre, Jonathan R.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.30-42
    • /
    • 2010
  • In this work we consider the problem of downlink resource allocation for proportional fairness of long term received rates of data users and quality of service for real time sessions in an OFDMA-based wireless system. The base station allocates available power and subchannels to individual users based on long term average received rates, quality of service (QoS) based rate constraints and channel conditions. We formulate and solve a joint bandwidth and power optimization problem, solving which provides a performance improvement with respect to existing resource allocation algorithms. We propose schemes for flat as well as frequency selective fading cases. Numerical evaluation results show that the proposed method provides better QoS to voice and video sessions while providing more and fair rates to data users in comparison with existing schemes.

WiMAX Channel Allocation Scheme for Heterogeneous Service (다중 서비스 지원을 위한 WiMAX 채널할당기법)

  • Lee, Ju-Hyeon;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1783-1791
    • /
    • 2010
  • Mobile WiMAX system provides broadband wireless access with a variety of services such as voice, video and data communications and providing QoS for each of these services become an important issue. In Mobile WiMAX system, it is important to allocate resources appropriately in order to support the efficient utilization of resources among various real-time and non real-time services. Although many packet scheduling schemes for real-time services in OFDMA system have been proposed, it need to be modified to apply to Mobile WiMAX system. Since Mobile WiMAX supports five types of service classes, QoS constraints of each class should be taken into consideration. In this paper, we propose an efficient packet scheduling scheme to support various services by considering the QoS constraints of each class.

Trustworthy Service Selection using QoS Prediction in SOA-based IoT Environments (SOA기반 IoT환경에서 QoS 예측을 통한 신뢰할 수 있는 서비스 선택)

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.123-131
    • /
    • 2019
  • The Internet of Things (IoT) environment must be able to meet the needs of users by providing access to various services that can be used to develop diverse user applications. However, QoS issues arise due to the characteristics of the IoT environment, such as numerous heterogeneous devices and potential resource constraints. In this paper, we propose a QoS prediction method that reflects trust between users in SOA based IoT. In order to increase the accuracy of QoS prediction, we analyze the trust and distrust relations between users and identify similarities among users and predict QoS based on them. The centrality is calculated to enhance trust relationships. Experimental results show that QoS prediction can be improved.

QoS-Guaranteed Capacity of Centralized Cognitive Radio Networks with Interference Averaging Techniques

  • Wang, Jing;Lin, Mingming;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.18-34
    • /
    • 2014
  • It is widely believed that cognitive radio (CR) networks have an opportunistic nature and therefore can only support best-effort traffics without quality-of-service (QoS) guarantees. In this paper, we propose a centralized CR network that adopts interference averaging techniques to support QoS guaranteed traffics under interference outage constraints. In such a CR network, a CR user adaptively adjusts its transmit power to compensate for the channel loss, thereby keeping the receive signal power at the CR base station (BS) at a constant level. The closed-form system capacity of such a CR network is analyzed and derived for a single cell with one CR BS and multiple CR users, taking into account various key factors such as interference outage constraints, channel fading, cell radius, and locations of primary users. The accuracy of the theoretical results is validated by Monte Carlo simulations. Numerical and simulation results show promising capacity potential for deploying QoS-guaranteed CR networks in frequency bands with fixed primary receivers. Our work can provide theoretical guidelines for the strategic planning of centralized CR networks.

Packet Scheduling Scheme for IEEE 802.16 System (IEEE 802.16 시스템을 위한 패킷 스케줄링 기법)

  • Lee, Eunyoung;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.966-968
    • /
    • 2009
  • In IEEE 802.16 system, it is important to allocate resources appropriately in order to the efficient utilization of resources among a variety of real-time and non real-time packets. although a lot of the real-time and non real-time packet scheduling schemes in OFDMA system have been proposed, it need to be modified to apply to IEEE 802.16 system. Since IEEE 802.16 supports five kinds of service classes, it is important to take QoS constraints of these classes into consideration. In this paper, we propose a efficient scheduling scheme to support various services by considering the QoS constraints of each classes.

  • PDF

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

Effect Analysis of User-Multiplexing on Delay QoS Performance in Low-Power Wireless Communication Systems (저전력 무선통신 시스템에서 사용자 다중화가 지연 QoS 성능에 미치는 영향 분석)

  • Ahn, Seong-Woo;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.69-76
    • /
    • 2011
  • In this paper, we present the analytic model to quantify the system capacity with delay Quality of Service (QoS) constraints, and analyze the effect of user-multiplexing on the delay QoS performance in multiuser low-power wireless communication systems. For this purpose, we define the degree of multiplexing as the number of scheduled users to be served in a frame, and investigate the effect of degree of multiplexing (DoM) on the trade-off of throughput and delay QoS constraints. Through this analysis, we characterize the optimal DoM maximizing the energy efficiency in low-power communication environments. Finally, through the simulation results, we verify that our approach with its optimal DoM yields substantial capacity gain.

Uplink Resource Management Scheme for Multiple QoS Traffics in cdma2000 type Networks: Modified Weighted G-Fair Scheduler with RoT Filling (cdma2000-type 네트워크의 역방향 링크에서의 다중 QoS 서비스 보장을 위한 자원 관리 기술: Modified Weighted G-Fair 스케줄러)

  • 기영민;김은선;김동구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.786-793
    • /
    • 2004
  • Autonomous data rate control scheme of current IxEV-DO uplink networks can not supper the various QoS requirements of heterogeneous traffics nor hold rise-over-thermal OtoT) constraints. In this paper, an uplink resource management scheme called the modified weighted g-fair (MWGF) scheduler with RoT filling is proposed and evaluated for heterogeneous traffics in cdma2000 type uplink networks. The proposed scheme belongs to a family of centralized resource management schemes and offers QoS guarantee by using priority metrics as well as lower system loading by holding RoT constraints using RoT filling method. With some case-study simulations, the proposed algorithms shows lower average delays of real time users compared to that of autonomous rate control by 29 - 40 %. It also shows the 1.0 - 1.3 dB lower received RoT level than autonomous rate control schemes, leading to lower network loading.