• 제목/요약/키워드: QTLS

검색결과 208건 처리시간 0.03초

Identification of glucosinolate-associated QTLs in cabbage (Brassica oleracea L. var. capitata)

  • Oh, Sang Heon;Choi, Su Ryun;Pang, Wenxing;Rameneni, Jana Jeevan;Yi, So Young;Kim, Man-Sun;Im, Su Bin;Lim, Yong Pyo
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Glucosinolates are one of the important plant secondary metabolites that are produced mainly in Brassicaceae plants. The compounds are primarily involved in defense responses to biotic and abiotic resistance in plants and play important biological roles during plant growth and development. In this study, the glucosinolate profiles in leaves of two different Brassica oleracea populations were compared using high-performance liquid chromatography (HPLC). The nine major glucosinolates compounds in cabbage leaves were identified as belonging to the aliphatic and indolic groups. Among them, sinigrin, which belongs to the aliphatic group, was recorded to be 41% whereas glucobrassicin and 4-methoxyglucobrassicin, which belong to the indolic group, were recorded to be 53.8%. In addition, we performed a genetic analysis to identify regions of the genome regulating glucosinolates biosynthesis in the $F_3$ population of Brassica oleracea. A total of 9 glucosinolates were used for the quantitative trait locus (QTL) analysis. Out of 9, a total of 3 QTLs were identified and they were associated with sinigrin, glucobrassicin, and 4-methoxyglucobrassicin synthesis located in Chromosome 1 and Chromosome 8, respectively. The results of this study will provide valuable information for the breeding of cabbage containing high glucosinolate content, and our next target is to develop component-specific and tightly linked markers for various glucosinolates.

Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

  • Lee, Jeong-Dong;Bilyeu, Kristin D.;Shannon, James Grover
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.201-210
    • /
    • 2007
  • Soybean [Glycine max(L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates(palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increased from 23 to > 55%, and linolenic acid reduced from 8 to < 3%. Reduced palmitic acid(16:0) is conditioned by three or more recessive alleles at the Fap locus. QTLs for reduced palmitic acid have mapped to linkage groups(LGs) A1, A2, B2, H, J, and L. Genes at the Fad locus control oleic acid content(18:1). Six QTLs($R^2$=4-25%) for increased 18:1 in N00-3350(50 to 60% 18:1) explained four to 25% of the phenotypic variation. M23, a Japanese mutant line with 40 to 50% 18:1 is controlled by a single recessive gene, ol. A candidate gene for FAD2-1A can be used in marker-assisted breeding for high 18:1 from M23. Low linolenic acid(18:3) is desirable in soy oil to reduce hydrogenation and trans-fat accumulation. Three independent recessive genes affecting omega-3 fatty acid desaturase enzyme activity are responsible for the lower 18:3 content in soybeans. Linolenic acid can be reduced from 8 to about 4, 2, and 1% from copies of one, two, or three genes, respectively. Using a candidate gene approach perfect markers for three microsomal omega-3 desaturase genes have been characterized and can readily be used in for marker assisted selection in breeding for low 18:3.

  • PDF

Identification of quantitative trait loci for the fatty acid composition in Korean native chicken

  • Jin, Shil;Park, Hee Bok;Seo, Dongwon;Choi, Nu Ri;Manjula, Prabuddha;Cahyadi, Muhammad;Jung, Samooel;Jo, Cheorun;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1134-1140
    • /
    • 2018
  • Objective: Fatty acid composition is one of the most important meat quality traits because it can contribute to functional, sensorial, and nutritional factors. In this study, quantitative trait locus (QTL) analyses for fatty acid composition traits were investigated in thigh and breast meat of Korean native chicken (KNC). Methods: In total, 18 fatty acid composition traits were investigated from each meat sample using 83 parents, and 595 $F_1$ chicks of 20 week old. Genotype assessment was performed using 171 informative DNA markers on 26 autosomes. The KNC linkage map was constructed by CRI-MAP software, which calculated genetic distances, with map orders between markers. The half-sib and full-sib QTL analyses were performed using GridQTL and SOLAR programs, respectively. Results: In total, 30 QTLs (12 in the thigh and 18 in the breast meat) were detected by the half-sib analysis and 7 QTLs (3 in the thigh and 4 in the breast meat) were identified by the full-sib analysis. Conclusion: With further verification of the QTL regions using additional markers and positional candidate gene studies, these results can provide valuable information for determining causative mutations affecting the fatty acid composition of KNC meat. Moreover, these findings may aid in the selection of birds with favorable fatty acid composition traits.

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won;Chung, Myungguen;Park, Soo-Jung;Cho, Seong Beom;Hong, Kyung-Won
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.187-194
    • /
    • 2014
  • Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< $5{\times}10^{-8}$), 8 SNPs with genome-wide suggestive p-values ($5{\times}10^{-8}{\leq}$ p < $1{\times}10^{-5}$), and 2 SNPs of more functional variants with borderline p-values ($5{\times}10^{-5}{\leq}$ p < $1{\times}10^{-4}$). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.