• Title/Summary/Keyword: QTL mapping

Search Result 164, Processing Time 0.029 seconds

Genome Wide Association Study for Phytophthora sojae Resistance with the Two Races Collected from Main Soybean Production Area in Korea with 210 Soybean Natural Population

  • Beom-Kyu Kang;Su-Vin Heo;Ji-Hee Park;Jeong-Hyun Seo;Man-Soo Choi;Jun-Hoi Kim;Jae-Bok Hwang;Ji-Yeon Ko;Yun-Woo Jang;Young-Nam Yun;Choon-Song Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.202-202
    • /
    • 2022
  • Recently days, soybean production in paddy field is increasing, from 4,422 ha in 2016 to 10,658 ha in 2021 in Korea. It is easy for Phytophthora stem and root rot (PSR) occurring in paddy field condition, when it is poorly drained soils with a high clay content, and temporary flooding and ponding. Therefore PSR resistant soybean cultivar is required. The objective of this study is to identify QTL region and candidate genes relating to PSR resistance of the race in main soybean cultivation area in Korea. 210 soybean materials including cultivars and germplasm were used for inoculation and genome-wide association study (GWAS). Inoculation was conducted using stem-scar method with 2 replications in 2-year for the race 3053 from Kimje and 3617 from Andong. 210 materials were genotyped with Soya SNP 180K chip, and structure analysis and association mapping were conducted with QTLMAX V2. The results of inoculation showed that survival ratio ranged from 0% to 96.7% and mean 9.7% for 3053 and ranged from 0% to 100% and mean 7.6% for 3617. Structure analysis showed linkage disequillibrium (LD) was decayed below r2=0.5 at 335kb of SNP distance. Significant SNPs (LOD>7.0) were identified in Chr 1, 2, 3, 4, 5, 11, 14, 15 for 3053 and Chr 1, 2, 3, 7, 10, 14 for 3617. Especially, LD blocks (AX-90455181;15,056,628bp~AX-90475572;15,298,872bp) in Chr 2 for 3053 and 3067 were duplicated. 29 genes were identified on these genetic regions including Glyma.02gl47000 relating to ribosome recycling factor and defense response to fungus in Soybase.

  • PDF

Current status of Brassica A genome analysis (Brassica A genome의 최근 연구 동향)

  • Choi, Su-Ryun;Kwon, Soo-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.33-48
    • /
    • 2012
  • As a scientific curiosity to understand the structure and the function of crops and experimental efforts to apply it to plant breeding, genetic maps have been constructed in various crops. Especially, in the case of Brassica crop, genetic mapping has been accelerated since genetic information of model plant $Arabidopsis$ was available. As a result, the whole $B.$ $rapa$ genome (A genome) sequencing has recently been done. The genome sequences offer opportunities to develop molecular markers for genetic analysis in $Brassica$ crops. RFLP markers are widely used as the basis for genetic map construction, but detection system is inefficiency. The technical efficiency and analysis speed of the PCR-based markers become more preferable for many form of $Brassica$ genome study. The massive sequence informative markers such as SSR, SNP and InDels are also available to increase the density of markers for high-resolution genetic analysis. The high density maps are invaluable resources for QTLs analysis, marker assisted selection (MAS), map-based cloning and comparative analysis within $Brassica$ as well as related crop species. Additionally, the advents of new technology, next-generation technique, have served as a momentum for molecular breeding. Here we summarize genetic and genomic resources and suggest their applications for the molecular breeding in $Brassica$ crop.

Chromosomal Localization and Mutation Detection of the Porcine APM1 Gene Encoding Adiponectin (Adiponectin을 암호화하는 돼지 APM1 유전자의 염색체상 위치파악과 돌연변이 탐색)

  • Park, E.W.;Kim, J.H.;Seo, B.Y.;Jung, K.C.;Yu, S.L.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.537-546
    • /
    • 2004
  • Adiponectin is adipocyte complement-related protein which is highly specialized to play important roles in metabolic and honnonal processes. This protein, called GBP-28, AdipoQ, and Acrp30, is encoded by the adipose most abundant gene transcript 1 (APM1) which locates on human chromosome 3q27 and mouse chromosome 16. In order to determine chromosomal localization of the porcine APM1, we carried out PCR analysis using somatic cell hybrid panel as well as porcine whole genome radiation hybrid (RH) panel. The result showed that the porcine APM1 located on chromosome 13q41 or 13q46-49. These locations were further investigated with the two point analysis of RH panel, revealed the most significant linked marker (LOD score 20.29) being SIAT1 (8 cRs away), where the fat-related QTL located. From the SSCP analysis of APM1 using 8 pig breeds, two distinct SSCP types were detected from K~ native and Korean wild pigs. The determined sequences in Korean native and Korean wild pigs showed that two nucleotide positions (T672C and C705G) were substituted. The primary sequence of the porcine APM1 has 79 to 87% identity with those of human, mouse, and bovine APM1. The domain structures of the porcine APM1 such as signal sequence, hypervariable region, collagenous region. and globular domain are also similar to those of mammalian genes.

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.