• Title/Summary/Keyword: QS

Search Result 234, Processing Time 0.025 seconds

Studies on electrocardiogram of the normal Korean native cattle II. Wave forms and amplitudes of the unipolar precordial chest leads (정상적(正常的)인 한우(韓牛)의 심전도(心電圖)에 관(關)한 연구(硏究) II. 흉부단극유도(胸部單極誘導)의 파형(波形)과 전위(電位))

  • Choi, In-hyuk;Kim, Soo-young;Kim, Nam-soo;Suh, Doo-seok
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.735-746
    • /
    • 1993
  • Electrocardiographic parameters of amplitude and the shape of waves on the unipolar precordial chest leads in the normal Korean native cattles have been measured with a 3 channel electrocardiograph built in a computed and analysis. The study was conducted on 98 heads of mean age of 17.6 months. The wave forms of P, T and QRS complex wave in all leads showed various types. The parameters of the amplitude in the wave types showed the most frequency in each lead that were analyzed as follow : 1. In P wave, amplitudes of positive type showed a frequency of 92.9% and 93.9% in leads $CV_6LU$ and $CV_6LL$ that were $83.8{\pm}31.0{\mu}V$ and $76.0{\pm}30.7{\mu}V$, and negative type showed a frequency of 97.9% in lead V 10 that were $-80.2{\pm}29.4{\mu}V$, respectively. But the plate type in leads $CV_6RU$ and $CV_6RL$ showed frequency of 48% and 58.3%, respectively. 2. Average amplitude of the QRS complex were in a range of $277.0{\pm}154.0{\mu}V$ to $648.2{\pm}146.2{\mu}V$(mean of $418.8{\pm}139.4{\mu}V$) in all leads that were manifested the Low-Voltage QRS complex(below 1 mV in unipolar precordial leads). Average amplitudes of each wave type in the QRS complex were $-250.0{\pm}139.8{\mu}V$ and $-399.2{\pm}226.8{\mu}V$ in the QS group types that showed a frequency of 50.0% and 82.5% in the leads $CV_6LU$ and $CV_6LL$, respectively. And average amplitudes of the R group types showed a frequency of 85.6%, 56.1% and 75.8% in the $CV_6RU$, $CV_6RL$ and $V_{10}$ that were $321.5{\pm}142.1{\mu}V$, $271.6{\pm}139.9{\mu}V$ and $552.4{\pm}132.7{\mu}V$, respectively. 3. In T waves, Amplitudes of the positive type showed a frequency of 60.2%, 46.9% and 83.7% in leads of $CV_6LL$, $CV_6RU$ and $CV_6RL$ that were respectively $184.7{\pm}93.7{\mu}V$ $103.7{\pm}64.43{\mu}V$ and $111.8{\pm}39.3{\mu}V$, the negative type showed a frequency of 62.2% and 93.7% in leads $CV_6LU$ and $V_{10}$ that were $142.2{\pm}82.1{\mu}V$ and $-280.3{\pm}107.2{\mu}V$, respectively. 4. Average amplitude of ST segment were $3.7{\pm}33.1{\mu}V$, $0.9{\pm}23.1{\mu}V$, $10.9{\pm}28.6{\mu}V$, $5.8{\pm}28.3{\mu}V$ and $-34.7{\pm}48.4{\mu}V$ in leads $CV_6LL$, $CV_6RU$, $CV_6RL$, $CV_6LU$ and $V_{10}$ respectively.

  • PDF

Studies on electrocardiogram of the normal Korean native cattle I. Standard limb leads (정상적(正常的)인 한우(韓牛)의 심전도(心電圖)에 관(關)한 연구(硏究) I. 표준지유도(標準肢誘導))

  • Choi, In-hyuk;Jung, In-sung;Kim, Nam-soo;Suh, Doo-seok
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.719-734
    • /
    • 1993
  • The electrocardiographic(ECG) parameters on the standard limb leads in the normal Korean native cattle have been measured with a 3 channel Electrocardiograph built in a computed analysis. The study was conducted on the animals 98 heads of mean age of 17.7 months. Conduction parameters, waves, intervals and segments have been recorded. The recordings were analyzed as to shape and amplitude of the P and T waves and the components of the QRS complex. Heart rate was recorded by the Electrocardiogram which were a mean of $80.4{\pm}11.6beats/min$. And the younger had a higher heart rate than the older one. Average conduction times in the RP, the QRS complex and the QTc interval recorded $166.7{\pm}23.1msec.$, $79.7{\pm}8.8msec.$ and $395.5{\pm}30.4msec.$, in the P and T wave duration recorded $70.1{\pm}13.5msec.$ and $97.6{\pm}16.9msec.$, and in the PR and ST segment duration recorded $97.9{\pm}23.5msec.$ and $173.9{\pm}40.3msec.$, respectively. The wave forms in each lead observed various types. The amplitudes of wave type showed the highest frequency in each lead that were analyzed as follow : 1. In P wave, amplitudes of the positive type showed the frequency of 65.3%, 82.7% and 52.0% in leads I, II and III that were $103.1{\pm}47.8{\mu}V$, $115.2{\pm}37.3{\mu}V$ and $67.4{\pm}26.9{\mu}V$, and it showed the frequency of 54.1% and 85.7% in the leads aVL and aVF that were $63.7{\pm}23.0{\mu}V$, $88.0{\pm}83.6{\mu}V$, respectively. Average amplitude of the negative type showed the frequency of 78.6% in lead aVR which was $99.3{\pm}38.0{\mu}V$. 2. Average amplitude of the QRS complex were from $362.8{\pm}177.7{\mu}V$ to $532.8{\pm}253.9{\mu}V$(mean of $449.1{\pm}57.2{\mu}V$) that in all leads except lead I were manifested the Low-Voltage QRS complex(below 0.5mV). Average amplitudes of each wave type in the QRS complex aere $-50.2.4{\pm}258.2{\mu}V$ and $-428.6{\pm}195.1{\mu}V$ in the QS groups type that showed a frequency of 66.3%, 70.4% in the leads I and aVL, were $451.1{\pm}20.4.0{\mu}V$, $387.6{\pm}175.8{\mu}V$ and $299.3{\pm}146.5{\mu}V$ in the R groups type that showed a frequency of 48.0%, 53.1% and 34.7% in the leads III, aVR and aVF, and were $-307.5{\pm}180.3{\mu}V$, $201.4{\pm}77.2{\mu}V$ in the QR wave type which showed a frequency of 39.8% in lead II, respectively. 3. In T wave, amplitude of the positive type showed the frequency of 50.0%, 82.7%, 51.0% and 57.1% in leads II, III aVR and aVF which were $214.9{\pm}115.6{\mu}V$, $188.5{\pm}119.3{\mu}V$, $191.0{\pm}93.7{\mu}V$ and $165.7{\pm}91.9{\mu}V$, and the negative type showed a frequecny of 66.3% and 72.5% in leads I and aVL. that were $221.3{\pm}112.5{\mu}V$, $-173.6{\pm}86.7{\mu}V$, respectively. 4. Amplitude of ST segment in leads I, II and III were a mean of $-12.2{\pm}37.2{\mu}V$, $17.5{\pm}42.6{\mu}V$ and $28.3{\pm}40.4{\mu}V$, in leads aVR, aVL and aVF were $-3.9{\pm}32.5{\mu}V$, $-15.9{\pm}35.6{\mu}V$ and $26.2{\pm}37.5{\mu}V$, respectively.

  • PDF

A Study on World University Evaluation Systems: Focusing on U-Multirank of the European Union (유럽연합의 세계 대학 평가시스템 '유-멀티랭크' 연구)

  • Lee, Tae-Young
    • Korean Journal of Comparative Education
    • /
    • v.27 no.4
    • /
    • pp.187-209
    • /
    • 2017
  • The purpose of this study was to highlight the necessity of a conceptual reestablishment of world university evaluations. The hitherto most well-known and validated world university evaluation systems such as Times Higher Education (THE), Quacquarelli Symonds (QS) or Academic Ranking of World Universities (ARWU) primarily assess big universities with quantitative evaluation indicators and performance results in the rankings. Those Systems have instigated a kind of elitism in higher education and neglect numerous small or local institutions of higher education, instead of providing stakeholders with comprehensive information about the real possibilities of tertiary education so that they can choose an institution that is individually tailored to their needs. Also, the management boards of universities and policymakers in higher education have partly been manipulated by and partly taken advantage of the elitist ranking systems with an economic emphasis, as indicated by research-centered evaluations and industry-university cooperation. To supplement such educational defects and to redress the lack of world university evaluation systems, a new system called 'U-Multirank' has been implemented with the financial support of the European Commission since 2012. U-Multirank was designed and is enforced by an international team of project experts led by CHE(Centre for Higher Education/Germany), CHEPS(Center for Higher Education Policy Studies/Netherlands) and CWTS(Centre for Science and Technology Studies at Leiden University/Netherlands). The significant features of U-Multirank, compared with e.g., THE and ARWU, are its qualitative, multidimensional, user-oriented and individualized assessment methods. Above all, its website and its assessment results, based on a mobile operating system and designed simply for international users, present a self-organized and evolutionary model of world university evaluation systems in the digital and global era. To estimate the universal validity of the redefinition of the world university evaluation system using U-Multirank, an epistemological approach will be used that relies on Edgar Morin's Complexity Theory and Karl Popper's Philosophy of Science.

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF