• Title/Summary/Keyword: QRS features

Search Result 22, Processing Time 0.029 seconds

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.

Pattern Classification of the QRS-complexes Using Relational Correlation (관계상관식을 이용한 QRS 패턴분류)

  • Hwang, Seon-Cheol;Jeong, Hee-Kyo;Shin, Kun-Soo;Lee, Byung-Chae;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.428-431
    • /
    • 1990
  • This paper describes a pattern classification algorithm of QRS-complexes using significant point detection for extracting features of signals. Significant point extraction was processed by zero-crossing method, and decision function based on relational spectrum was used for pattern classification of the QRS-complexes. The hierarchical AND/OR graph was obtained by decomposing the signal, and by use of this graph, QRS's patterns were classified. By using the proposed algorithm, the accuracy of pattern classification and the processing speed were improved.

  • PDF

Analysis of QRS-wave Using Wavelet Transform of Electrocardiogram (웨이블릿 변환을 이용한 심전도의 QRS파 신호 분석)

  • Choi, Chang-Hyun;Kim, Yong-Joo;Kim, Tae-Hyeong;Ahn, Yong-Hee;Shin, Dong-Ryeol
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.317-325
    • /
    • 2008
  • The electrocardiogram (ECG) measurement system consists of I/O interface to input the ECG signals from two electrodes, FPGA (Field programmable gate arrays) module to process the signal conditioning, and real time module to control the system. The algorithms based on wavelet transform were developed to remove the noise of the ECG signals and to determine the QRS-waves. Triangular wave tests were conducted to determine the optimal factors of the wavelet filter by analyzing the SNRs (signal to noise ratios) and RMSEs (root mean square errors). The hybrid rule, soft method, and symlets of order 5 were selected as thresholding rule, thresholding method, and mother wavelet, respectively. The developed wavelet filter showed good performance to remove the noise of the triangular waves with 10.98 dB of SNR and 0.140 mV of RMSE. The ECG signals from a total of 6 subjects were measured at different measuring postures such as lying, sitting, and standing. The durations of QRS-waves, the amplitudes of R-waves, the intervals of RR-waves were analyzed by using the finite impulse response (FIR) filter and the developed wavelet filter. The wavelet filter showed good performance to determine the features of QRS-waves, but the FIR filter had some problems to detect the peaks of Q and S waves. The measuring postures affected accuracy and precision of the ECG signals. The noises of the ECG signals were increased due to the movement of the subject during measurement. The results showed that the wavelet filter was a useful tool to remove the noise of the ECG signals and to determine the features of the QRS-waves.

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Feature Extraction of ECG Signal for Heart Diseases Diagnoses (심장질환진단을 위한 ECG파형의 특징추출)

  • Kim, Hyun-Dong;Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

Classification of Premature Ventricular Contraction using Error Back-Propagation

  • Jeon, Eunkwang;Jung, Bong-Keun;Nam, Yunyoung;Lee, HwaMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.988-1001
    • /
    • 2018
  • Arrhythmia has recently emerged as one of the major causes of death in Koreans. Premature Ventricular Contraction (PVC) is the most common arrhythmia that can be found in clinical practice, and it may be a precursor to dangerous arrhythmias, such as paroxysmal insomnia, ventricular fibrillation, and coronary artery disease. Therefore, we need for a method that can detect an abnormal heart beat and diagnose arrhythmia early. We extracted the features corresponding to the QRS pattern from the subject's ECG signal and classify the premature ventricular contraction waveform using the features. We modified the weighting and bias values based on the error back-propagation algorithm through learning data. We classify the normal signal and the premature ventricular contraction signal through the modified weights and deflection values. MIT-BIH arrhythmia data sets were used for performance tests. We used RR interval, QS interval, QR amplitude and RS amplitude features. And the hidden layer with two nodes is composed of two layers to form a total three layers (input layer 0, output layer 3).