• Title/Summary/Keyword: QRA(Quantitative Risk Assessment)

Search Result 47, Processing Time 0.025 seconds

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

The Safety Design of Corrosive Chemical Handling Process based on Reliability Database (신뢰도 데이터베이스 기반 부식성 화학물질 취급공정의 안전설계)

  • Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.141-149
    • /
    • 2018
  • In a PCB factory, there is a corrosive chemical substance supply system that can causes major leakage accidents. These accidents can give rise to shut down the factory and do residents damage that cause enormous loss of properties. To mitigate these risks, it is necessary to provide a chemical disaster prevention system. Moreover, after considering the situation and environment of the production site, it is of great importance to build an optimal chemical accident prevention system by reflecting risk reduction measures from the point of process design and by assessing quantitative risk based on reliability data. However, because there was no established database of the reliability about facilities and equipment that can be used in the domestic, the business site and consulting organization had being used the reliability data such as USA CCPS(Center for Chemical Process Safety). In these days, Korean institutes are studying on reliability data utilization method of quantitative risk assessment for preventing chemical accidents and domestic utilization algorithms and storage bed of reliability data. This study presents samples of reliability database about the chemical substance supply system that constructed from the history data such as failure, maintenance for 10 years at a PCB factory. Also, this work proposes the safety design criteria for supply facilities of corrosive chemical substance by assessing quantitative risk on the basis of the reliability data.

A Study on the Methodology modelling of Risk Assessment in Road Tunnels (도로터널시설 위험평가 모델링을 위한 방법론 연구)

  • Cho, Inuh;Han, Dae-yong;Kim, Seung-jin;Yoon, Jong-ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.59-73
    • /
    • 2016
  • The demand for subsurface transport is increasing. The users and the operators of road tunnels are exposed to risks with different causes. One main cause, however, is the traffic situation in the event of accidents. The importance of a Quantified Risk Assessment is increasing to quantify the safety of road tunnels and to balance the requirements (capacity, reliability, availability, maintainability and safety) of various stakeholders. Although there are classical methods for risk assessments, such as ETA and FTA. These methods are used for relatively simple cases because it could not relevantly reflect the diversity and relationship of the parameters. Therefore, a quantitative risk assessment based on Bayesian Probabilistic Networks considering interdependence between the parameters of a complex underground system as a double deck tunnel is provided.

Risk Screening of a BTX Plant Using FEDI Method (화재폭발손실지수법을 이용한 BTX 공장의 위험선별)

  • Kim Yong-Ha;Kim In-Tae;Kim In-Won;Kim Ku-Hwoi;Yoon En-Sup
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.20-28
    • /
    • 2005
  • Major petrochemical companies in the USA and the EU map out the strategies step-by-step hazard evaluation for the efficient risk management. They adopted the risk screening methods, such as Dow fire & explosion index, as a preliminary phase to execute detailed evaluation such as QRA (Quantitative Risk Assessment). In this study, The FEDI (Fire & Explosion Damage Index), which a kind of risk screening method proposed by Khan and Abbasi, was applied to the BTX plant in Korea. We showed that the FEDI can be effectively used to classify the hazard potential by comparison of the result from the FEDI and the result from QRA. And we showed that the characteristics and the quantities of chemical are the factors which have a largest effect on fire and explosion by executing relative sensitivity analysis of the FEDI. In conclusion, if the FEDI was applied as a preliminary phase of HAZOP, more efficient hazard evaluation can be possible.

Case Study on Advanced Fire and Explosion Index (화재폭발지수 개선에 대한 사례 연구)

  • Na, Gun Moon;Seoe, Jae Min;Lee, Mi Jeong;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The F&EI technique is one of the risk assessments with many advantages. It can save time and effort compared to quantitative risk assessment (QRA). By using the evaluation result of this technique, it is possible to check the effectiveness of the investment cost. In addition, a relative risk ranking can be created and used to establish the facility management cycle and to prioritize investment. However, evaluating the target process can be evaluated more than the actual risk since the LCCF, a loss prevention measure, is too limited. In addition, calculating premiums via this method can result in excessive premiums, making it difficult to evaluate the risk precisely. Therefore, new safety guard was added to the LCCF of the F&EI risk assessment with reference to HAZOP and LOPA techniques. Newly added LCCFs are Deflagration arrester, Check valve, SIS, and Vacuum beaker, etc. As a case study, F&EI risk assessment was performed on Acetone storage tank of a API (Active pharmaceutical ingredient) plant to compare actual MPPD. The estimated loss amount was 592,558$ for the existing technique and 563,571$ for the improved technique, which was reduced by about 5% compared to the previous one.This proved that a more precise evaluation is possible and that the efforts for safety at the workplace are reflected in the evaluation results.

Verification on Separation Distance Criteria when Transporting Dangerous Goods in Korea Railroad (국내 철도 위험물 운송 시 격리차 운영기준 안전성 검증)

  • Lee, Byeongwoo;Park, Dasung;Kang, Taesun;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.28-33
    • /
    • 2019
  • After the Tianjin Port explosion on 2015, it is highlighted that securing safety for dangerous goods in Korea and try to establish safety standards for railroad dangerous substances transport. In Korea, the regulation for the transport of dangerous goods is stipulated to need 3 buffer cars. However, It is inefficient that 3 buffer cars. because 3 buffer cars, increase transportation too much costs in transit and it is too strict compared to other country rules. The purpose of this study was to improve transportation efficiency by mitigating the criteria for isolated railroads through rational safety assessment. In order to verify this, we used a risk assessment software which is PHAST 7.2 developed by DNV GL. We calculated safety distances that could prevent ignitions setting up scenarios when relief system work installed on a train loaded with propylene, nonane. As a result, we confirmed that buffer cars can be reduced from three to one. This result would be implemented in the application of Korail.

Quantitative Risk Assessment of Mobile LNG Filling Station (이동식 LNG 충전소 정량적 위험성 평가)

  • Jeon, Eun-Gyeong;Choi, Young-Joo;Kim, Pil-Jong;Yu, Chul-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • The government is converting the fuel for trucks, one of the causes of PM in Korea, form diesel to LNG. Mobile LNG station are being developed to solve the problems of insufficient charging infrastructure and facilitate the spread of LNG fuel. In this study, QRA was used th calculate the CA of the facility for a secure design prior to the development of the mobile LNG station and to predict the individual/societal risk the scenario. As a result, the danger of mobile LNG station was in ALARP.

A Study on Safety Impact Assessment of a Multiple Hydrogen Refueling Station (다차종 동시 충전을 위한 수소 스테이션의 안전 영향 평가 연구)

  • Boo-Seung Kim;Kyu-Jin Han;Seung-Taek Hong;Youngbo Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • As the proliferation of hydrogen electric vehicles accelerates, there is observed diversification in hydrogen refueling station models. This diversification raises safety concerns for different types of stations. This study conducted a quantitative risk assessment of a multi-vehicle hydrogen station, capable of simultaneously refueling cars, buses, and trucks. Utilizing Gexcon's Effects&Riskcurves Software, scenarios of fire and explosion due to hydrogen leaks were assessed. The study calculated the impact distances from radiative heat and explosion overpressure, and measured risks to nearby buildings and populations. The largest impact distance was from fires and explosions at dispensers and high-pressure storage units. High-pressure storage contributes most significantly to personal and societal risk. The study suggests that conservative safety distances and proper protective measures for these facilities can minimize human and material damage in the event of a hydrogen leak.

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities (냉동제조 시설의 암모니아 누출사고 위험 분석)

  • Kang, Su-Jin;Lee, Ik-Mo;Moon, Jin-Young;Chon, Young-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

Probabilistic Risk Analysis of Dropped Objects for Corroded Subsea Pipelines (부식을 고려한 해저 파이프라인의 확률론적 중량물 낙하 충돌 위험도 해석)

  • Kumar, Ankush;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.93-102
    • /
    • 2018
  • Quantitative Risk Assessment (QRA) has been used in shipping and offshore industries for many years, supporting the decision-making process to guarantee safe running at different stages of design, fabrication and throughout service life. The assessments of a risk perspective are informed by the frequency of events (probability) and the associated consequences. As the number of offshore platforms increases, so does the length of subsea pipelines, thus there is a need to extend this approach and enable the subsea industry to place more emphasis on uncertainties. On-board operations can lead to objects being dropped on subsea pipelines, which can cause leaks and other pipeline damage. This study explains how to conduct hit frequency analyses of subsea pipelines, using historical data, and how to obtain a finite number of scenarios for the consequences analysis. An example study using probabilistic methods is used.