• Title/Summary/Keyword: QProbe-qPCR

Search Result 1, Processing Time 0.015 seconds

Comparative Quantification of LacZ (β-galactosidase) Gene from a Pure Cultured Escherichia coli K-12

  • Han, Ji-Sun;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Escherichia coli K-12 (E. coli K-12) is a representative indicator globally used for distinguishing and monitoring dynamic fates of pathogenic microorganisms in the environment. This study investigated how to most critically quantify lacZ ($\beta$-galactosidase) gene in E. coli K-12 by two different real-time polymerase chain reaction (real-time PCR) in association with three different DNA extraction practices. Three DNA extractions, i.e., sodium dodecyl sulfate (SDS)/proteinase K, magnetic beads and guanidium thiocyanate (GTC)/silica matrix were each compared for extracting total genomic DNA from E. coli K-12. Among them, GTC/silica matrix and magnetic beads beating similarly worked out to have the highest (22-23 ng/${\mu}L$) concentration of DNA extracted, but employing SDS/proteinase K had the lowest (10 ng/${\mu}L$) concentration of DNA retrieved. There were no significant differences in the quantification of the copy numbers of lacZ gene between SYBR Green I qPCR and QProbe-qPCR. However, SYBR Green I qPCR obtained somewhat higher copy number as $1{\times}10^8$ copies. It was decided that GTC/silica matrix extraction or magnetic beads beating in combination with SYBR Green I qPCR can be preferably applied for more effectively quantifying specific gene from a pure culture of microorganism.