• 제목/요약/키워드: QK spaces

검색결과 1건 처리시간 0.014초

EXTENDED CESÀRO OPERATORS BETWEEN α-BLOCH SPACES AND QK SPACES

  • Wang, Shunlai;Zhang, Taizhong
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.567-578
    • /
    • 2017
  • Many scholars studied the boundedness of $Ces{\grave{a}}ro$ operators between $Q_K$ spaces and Bloch spaces of holomorphic functions in the unit disc in the complex plane, however, they did not describe the compactness. Let 0 < ${\alpha}$ < $+{\infty}$, K(r) be right continuous nondecreasing functions on (0, $+{\infty}$) and satisfy $${\displaystyle\smashmargin{2}{\int\nolimits_0}^{\frac{1}{e}}}K({\log}{\frac{1}{r}})rdr<+{\infty}$$. Suppose g is a holomorphic function in the unit disk. In this paper, some sufficient and necessary conditions for the extended $Ces{\grave{a}}ro$ operators $T_g$ between ${\alpha}$-Bloch spaces and $Q_K$ spaces in the unit disc to be bounded and compact are obtained.