• Title/Summary/Keyword: QCS

Search Result 28, Processing Time 0.153 seconds

Efficient Yard Tractor Control Method for the Dual Cycling in Container Terminal (효율적인 듀얼 사이클을 위한 야드 트랙터 통제 방법)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • Recent global supply chain, improving the efficiency of container shipping process is very important. In the overseas shipping of goods, the voyage of super containership is common to overcome amount of increasing cargo. Thus, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for maximizing the productivity of quay side. Yard Tractors(YTs) pooling methods also are introduced for increasing the efficiency of assignment of YTs. In this paper, we analyzed the efficiency of dual cycling through comparing existing pooling methods with the modified method for the dual cycling. We developed a simulation model using simulation analysis software, Arena. The result of experiment shown that the more dual cycling don't always increase the gross crane rate(GCR), which means productivity of quay cranes(QCs) per hour.

A Study On Optimized Design of Decision Support Systems for Container Terminal Operations (컨테이너 터미널 운영을 위한 의사결정시스템 설계의 최적화에 관한 연구)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.519-528
    • /
    • 2003
  • Container terminals need decisions in the course of daily-24 hour and 365 day - operations, and all these decisions are inter-related. The ultimate goal of Decision Support System is to minimize ship loading/unloading time, resources used to handle the workload, and congestion on the roads inside the terminal. It is also to make the best possible use of the storage space available. Therefore, the necessity of decision support tools are emphasized to enhance the operational efficiency of container shipping terminals more, because of limits and complexity of these decisions. So, in thia paper, we draw evaluation items for Decision Support Systems and suggest optimization strategy of evaluation items which have the greatest influence on Decision Support system, that is, yard stacking allocation, RTGC deployment among blocks, and YT allocation to QCs. We also estimate the efficiency of Decision Support System design by simulation using G2 language, comparing ship loading/unloading time.

DAQ System을 활용한 초지기 맥동현상의 개선

  • 이영준;김도환;서동준;고두석;이복진
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.81-81
    • /
    • 2001
  • 초지 공정은 wire, roll, pump등의 회전체로 이루어진 공정이 거의 대부분이기 때문에 주기적으로 변동하는 성분들이 많고, QCS(Quality Control System) 및 DCS(Distributed Co n ntrol System)상에 서 의 자동 Control Logic에 의 한 불안정 (Fluctuation)요소도 내 재 되 어 있 어 이에 대한 분석이 필요하다. 이러한 주기적인 변동은 제품의 여러 물성(평량, 두께, 광택 도등) 에 영향을 미치게 되어 품질의 균일성이나 프로파일에 영향을 미치게 된다. 따라서 공정상이나 품질에서 주기적으로 변동하는 성분을 추출하여 공정 각 성분과 연관을 시키변 품질에 나타나는 주기적 성분의 요인이 어느 부분에서 기인하는 지를 직접적으로 찾아낼 수 있고 이의 개선을 통해 품질의 균일성 및 프로파일 향상을 꾀할 수 있다. 본 연구에서는 Air padded type 헤드박스 초지기에서 DAQ(Data Acquisition) System 을 이용하여 각 공정별로 MD(Machine Direction)방향으로의 변동을 측정하고 제품의 물성 변동과 비교하였다. DAQ System은 각 공정상의 전기적 신호를 높은 주파수 영역까지 다채널로 동시에 받 아 들일 수 있는 장치로 이 시스템을 활용하여 공정상의 Machine chest 농도, Stock box 유량 및 레벨, Fan pump RPM, Cleaner압력, Screen압력, H!B압력 및 레벨, Silo level등 공 정요소의 변동상태와 상호영향을 분석하였다. 이러한 공정 각 요소의 변동과 MD 방향의 제품 물성 값(Tapio, Paper Variation Analyzer에 대한 비교 분석결과 제품 평량에서 주기적인 변동성분을 확인할 수 있었고 이중 큰 비 중을 차지하는 것이 fνB 레벨 변동주기와 일치하는 것을 찾아낼 수 있었다. 이에 근거하여 D DCS system의 control 요소인 튜닝 parameter(P,I 값)들을 미 세 조정 하여 제 품의 MD방향 평량 변동 진폭을 기존 수준의 30% 수준으로 감소시킬 수 있었다. 그 결과 COV(표준편차/ 평량)값을 0.8-1.2%에서 0.6-0.8%수준으로 낮출 수 있었고 이에 따라 CD (Cross Direction) 방향의 제품 Profile도 함께 개선되는 효과를 거둘 수 있었다.

  • PDF

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.501-507
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching is assigning AGVs to requested job to minimizing the delay of QCs and the travel distance of AGVs. Due to the high dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching decisions. In this situation, approaches based on a single rule are widely used due to its simplicity and small computational cost. However, these approaches have a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. The Proposed strategy consists of multiple decision criteria. A multi-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

Optimization of YT Dispatching Policy for Maximizing Quay Side Productivity in Container Terminals (컨테이너 터미널의 해측 생산성 극대화를 위한 YT 배차 전략 최적화)

  • Kim, Taekwang;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • One of the most important operational goals in container terminals is to maximize the quay side productivity by minimizing the turnaround times of the vessels, for which the operations of the quay cranes (QC) to load/unload containers onto/from the vessels should be conducted efficiently without delays. This paper suggests using a policy-based dispatching method for YTs (Yard Tractor) that deliver containers between QCs and the storage yard. The goal of using such a dispatching policy is to maximize the efficiency of the YT operation and accordingly to minimize the QC delays because of late arrivals of the YTs. In particular, in this paper, we modified the previously proposed policy for its application to real container terminal and verified the effect through simulation experiments using real terminal data.

Component Quality Certification System for Evaluation and Certification of COTS Components (COTS 컴포넌트의 평가 및 인증을 위한 컴포넌트 품질 인증 시스템)

  • 김수동;박지환;김남희
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1135-1148
    • /
    • 2003
  • A commercial-off-the-shelf (COTS) component is an implementation of common functionality among family members, where an in-house component implements an organization-specific functionality. Typically, a COTS component has a producer and aset of potential consumers. Consumers evaluate COTS components thoroughly before they purchase, because these components are developed by third party producers and most consumers have ‘not-invented-here’ syndrome. Hence, evaluating the quality of COTS components becomes an important prerequisite to a successful component-based application development. In this paper, we identify the characteristics of COTS components, and derive a practical quality model for components, C-QM, which consists of quality factors, criteria and metrics and a qualify certification system, C-QCS. The top design goal of C-QM is set to provide a practically applicable comprehensive quality model which can be effectively applied in assessing the various quality aspects of COTS components.

Effect of Mobile Crane Load on Excavated Slope Stability (이동식 크레인 하중이 굴착사면 안정성에 미치는 영향 분석)

  • Kim, Jeong Kon;Na, Ye Ji;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • The effect of heavy construction equipment on the excavated slope is investigated by slope stability analysis. A mobile crane with 500 kN capacity is applied as a working load to the background surface of the excavated slope, in both sandy soil and clay, designed to guarantee the safety of slope stability. Major parameters such as the distance between the edge of the slope and the mobile crane, groundwater level, and ground plate size of the mobile crane are considered. Only 23.8% and 14.3% of the analysis models with sandy soil and clay excavated slope, respectively, satisfied the slope stability. By changing the slope of the sandy soil from 1:1.0 to 1:1.2, the number of analysis models securing slope stability increased from 23.8% to 40.5%. For the clay excavated slope, the analysis models securing slope stability increased from 14.3% to 42.9% by changing slope inclination from 1:0.8 to 1:1.2. In addition, it is found that the increase in the size of the ground plate of the mobile crane increases the analysis models that secure slope stability. Therefore, it is an effective way to relax the excavated slope's inclination angle and simultaneously increase the ground plate size to guarantee stability.

Quay Crane Scheduling Considering the Workload of Yard Blocks in an Automated Container Terminal (장치장 블록의 작업부하를 고려한 안벽크레인 작업계획)

  • Lee, Seung-Hwan;Choe, Ri;Park, Tae-Jin;Kim, Kap-Hwan;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • This paper proposes quay crane (QC) scheduling algorithms that determine the working sequence of QCs over ship bays in a container vessel in automated container terminals. We propose two scheduling algorithms that examine the distribution of export containers in the stacking yard and determine the sequence of ship bays to balance the workload distribution among the yard blocks. One of the algorithms is a simple heuristic algorithm which dynamically selects the next ship bay based on the entropy of workloads among yard blocks whenever a QC finishes loading containers at a ship bay and the other uses genetic algorithm to search the optimal sequence of ship bays. To evaluate the fitness of each chromosome in the genetic algorithm, we have devised a method that is able to calculate an approximation of loading time of container vessels considering the workloads among yard blocks. Simulation experiments have been carried out to compare the efficiency of the proposed algorithms. The results show that our QC scheduling algorithms are efficient in reducing the turn-around time of container vessels.

  • PDF