• Title/Summary/Keyword: QC-LDPC 복호기

Search Result 8, Processing Time 0.019 seconds

Low-Complexity and High-Speed Multi-Size Circular Shifter With Benes Network Control Signal Optimization for WiMAX QC-LDPC Decoder (Benes 네트워크 제어 신호 최적화를 이용한 WiMAX QC-LDPC 복호기용 저면적/고속 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2367-2372
    • /
    • 2015
  • One of various low-density parity-check(LDPC) codes that has been adopted in many communication standards due to its error correction ability is a quasi-cyclic LDPC(QC-LDPC) code, which leads to comparable decoder complexity. One of the main blocks in the QC-LCDC code decoder is a multi-size circular shifter(MSCS) that can perform various size rotation. The MSCS can be implemented with many structures, one of which is based on Banes network. The Benes network structure can perform the normal MSCS operation efficiently, but it cannot use the properties coming from specifications like rotation sizes. This paper proposesd a scheme where the Benes network structure can use the rotation size property with the modification of the control signal generation. The proposed scheme is applied to the MSCS of IEEE 802.16e WiMAX QC-LDPC decoder to reduce the number of MUXes and the critical path delay.

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems (멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조)

  • Lee, Hanho;Ajaz, Sabooh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

Pipeline-Aware QC-IRA-LDPC Code and Efficient Decoder Architecture (Pipeline-Aware QC-IRA-LDPC 부호 및 효율적인 복호기 구조)

  • Ajaz, Sabooh;Lee, Hanho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.72-79
    • /
    • 2014
  • This paper presents a method for constructing a pipeline-aware quasi-cyclic irregular repeat accumulate low-density parity-check (PA-QC-IRA-LDPC) codes and efficient rate-1/2 (2016, 1008) PA-QC-IRA-LDPC decoder architecture. A novel pipeline scheduling method is proposed. The proposed methods efficiently reduce the critical path using pipeline without any bit error rate (BER) degradation. The proposed pipeline-aware LDPC decoder provides a significant improvement in terms of throughput, hardware efficiency, and energy efficiency. Synthesis and layout of the proposed architecture is performed using 90-nm CMOS standard cell technology. The proposed architecture shows more than 53% improvement of area efficiency and much better energy efficiency compared to the previously reported architectures.

Low-Complexity Multi-Size Circular Shifter for QC-LDPC Decoder Based on Two Serial Barrel-Rotators (두 개의 직렬 Barrel-Rotator를 이용한 QC-LDPC 복호기용 저면적 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1839-1844
    • /
    • 2015
  • The low-density parity-check(LDPC) code has been adopted in many communication standards due to its error correcting performance, and the quasi-cyclic LDPC(QC-LDPC) is widely used because of implementation easiness. In the QC-LDPC decoder, a cyclic-shifter is required to rotate data in various sizes. This kind of cyclic-shifters are called multi-size circular shifter(MSCS), and this paper proposes a low-complexity structure for MSCS. In the conventional serially-placed two barrel-rotators, the unnecessary multiplexers are revealed and removed, leading to low-complexity. The experimental results show that the area is reduced by about 12%.

Multi-Size Circular Shifter Based on Benes Network with High-Speed 3×3 Switch (고속 3×3 스위치를 이용한 Benes 네트워크 기반 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2637-2642
    • /
    • 2015
  • The low-density parity check(LDPC) code is being widely used due to its outperformed error-correction ability. The decoder of the quasi-cyclic LDPC(QC-LDPC) codes, a kind of LDPC codes, requires a multi-size cyclic shifter(MSCS) performing rotation of various sizes. The MSCS can be implemented with a Benes network, which requires a $3{\times}3$ switch if the number of data to be rotated is a multiple of 3. This paper proposes a control signal generation with lower complexity and a faster $3{\times}3$ switch. For the experiment, the proposed schemes are applied to the MSCS of an IEEE 802.16e WiMAX QC-LDPC code decoder. The result shows that the delay is reduced by about 8.7%.

8.1 Gbps High-Throughput and Multi-Mode QC-LDPC Decoder based on Fully Parallel Structure (전 병렬구조 기반 8.1 Gbps 고속 및 다중 모드 QC-LDPC 복호기)

  • Jung, Yongmin;Jung, Yunho;Lee, Seongjoo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.78-89
    • /
    • 2013
  • This paper proposes a high-throughput and multi-mode quasi-cyclic (QC) low-density parity-check (LDPC) decoder based on a fully parallel structure. The proposed QC-LDPC decoder employs the fully parallel structure to provide very high throughput. The high interconnection complexity, which is the general problem in the fully parallel structure, is solved by using a broadcasting-based sum-product algorithm and proposing a low-complexity cyclic shift network. The high complexity problem, which is caused by using a large amount of check node processors and variable node processors, is solved by proposing a combined check and variable node processor (CCVP). The proposed QC-LDPC decoder can support the multi-mode decoding by proposing a routing-based interconnection network, the flexible CCVP and the flexible cyclic shift network. The proposed QC-LDPC decoder is operated at 100 MHz clock frequency. The proposed QC-LDPC decoder supports multi-mode decoding and provides 8.1 Gbps throughput for a (1944, 1620) QC-LDPC code.

Quasi-Cyclic LDPC Codes using Superposition Matrices and Their Layered Decoders for Wibro Systems (Wibro 시스템에서 중첩 행렬을 이용한 준 순환 LDPC 부호의 설계 및 계층 복호기)

  • Shin, Beom-Kyu;Park, Ho-Sung;Kim, Sang-Hyo;No, Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.325-333
    • /
    • 2010
  • Most communication systems including Wibro use quasi-cyclic LDPC codes composed of circulants. However, it is very difficult to design quasi-cyclic(QC) LDPC codes with optimal degree distribution satisfying conditions on layered decoding and girth due to the restriction of the size of its base matrix. In this paper, we propose a good solution by introducing superposition matrices to QC LDPC codes. We derive the conditions on checking girth of QC LDPC codes with superposition matrices, and propose new decoder to support layered decoding both for original QC LDPC codes and their modifications with superposition matrices. Simulation results show considerable improvements to convergence speed and error-correcting performance of proposed scheme which adopts QC LDPC codes with superposition matrices.

LDPC Decoder Architecture for High-speed UWB System (고속 UWB 시스템의 LDPC 디코더 구조 설계)

  • Choi, Sung-Woo;Lee, Woo-Yong;Chung, Hyun-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.287-294
    • /
    • 2010
  • MB-OFDM UWB system will adopt LDPC codes to enhance the decoding performance with higher data rates. In this paper, we will consider algorithm and architecture of the LDPC codes in MB-OFDM UWB system. To suggest the hardware efficient LDPC decoder architecture, LLR(log-likelihood-ration) calculation algorithms and check node update algorithms are analyzed. And we proposed the architecture of LDPC decoder for the high throughput application of Wimedia UWB. We estimated the feasibility of the proposed architecture by implementation in a FPGA. The implementation results show our architecture attains higher throughput than other result of QC-LDPC case. Using this architecture, we can implement LDPC decoder for high throughput transmission, but it is 0.2dB inferior to the BP algorithm.