• Title/Summary/Keyword: QA phantom

Search Result 76, Processing Time 0.027 seconds

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

The evaluation of usefulness of Electronic Portal Imaging Device(EPID) (Electronic Portal Imaging Device(EPID)의 유용성 평가)

  • Lee, Yang-Hoon;Kim, Bo-Kyoum;Jung, Chi-Hoon;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • Purpose : To supply the information of EPID system and to analyze the possibility of substitution EPID for film dosimetry. Materials & Methods : With amorphous silicon(aSi) type EPID and liquid filled lonization chamber(LC) type EPID, the reproducibility according to focus detector distance(FDD) change and gantry rotation was analyzed, and also the possible range of image acquisition was analyzed with Alderson Rando phantom. The resolution and the contrast of aSi type EPID image were analyzed through Las Vegas phantom and water phantom. DMLC image was analyzed with X-Omat V film and EPID to see wether it could be applied to the qualify assurance(QA) of IMRT. Results : The reproducibility of FDD position was within 1mm, but the reproducibility of gantry rotation was ${\pm}2,\;{\pm}3mm$ respectively. The resolution and the contrast of EPID image were affected by dose rate, image acquisition time, image acquisition method and frame number. According to the possible range of image acquisition of EPID, it is verified that the EPID is easier to use than film. There is no difference between X-Omat V film and EPID images for the QA of IMRT. Conclusion : Through various evaluation, we could obtain lots of useful information about the EPID. Because the EPID has digital data, also we found that the EPID is more useful than film dosimerty for the periodical Qualify Assurance of IMRT. Especially when it is difficult to do point dose measurement with diode or ionization chamber, the EPID could be very useful substitute. And we found that the diode and ionization chamber are difficult to evaluate the sliding window images of IMRT, but the EPID was more useful to do it.

  • PDF

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

Development of Stereotactic Surgery system with CT, MR Imaging, and Angiography (컴퓨터 단층촬영, 자기공명영상, 뇌혈관촬영을 이용한 정위적 수술시스템의 개발)

  • Kim, S.H.;Suh, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.117-118
    • /
    • 1998
  • The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using CT/MRI/angiography and multi-purpose QA phantom. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed, and targets on each CT image were superimposed each other on MR/angiography images without distortion corretion. This system was implented in Visual C++ as a PC-based application program.

  • PDF

Evaluation of the Utility of a Volumetric Modulated Arc Therapy Specific Patient Quality Assurance using Software-based Quality Assurance System (소프트웨어 기반 정도관리 시스템을 이용한 부피세기조절회전치료 환자 별 정도관리의 유용성 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Kim, Yon-Lae;Kwon, Kyung-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • The purpose of this study is to evaluate the usefulness of a software-based quality assurance system based on Volumetric Modulated Arc Therapy treatment plan. Evaluate treatment plan through the D VH analysis, PTV mean dose ($D_{mean}$) and PTV 95% dose($D_{95}$) compare the MFX based on original treatment plan, Average error rate was $0.9{\pm}0.6%$, $1.0{\pm}0.8%$, respectively. Measuring point dose using phantom and ion chamber, the average error rate between the ionization chamber and MFX was $0.9{\pm}0.7%$, $1.1{\pm}0.7%$ (high dose region), $1.1{\pm}0.9%$, $1.2{\pm}0.7%$ (low dose region). The average gamma though of MFX and $Delta^{4PT}$ is $98.7{\pm}1.2%$, $98.4{\pm}.3%$, respectively. Through this study, A software based QA system that simplifies hardware based QA procedures that involve a lot of time and effort. It can be used as a simple and useful tool in clinical practice.

3D 치료시 Couch rotation에 의한 Isocenter 변화에 대한 고찰

  • 박용철;주상규;송기원;정천영
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.144-146
    • /
    • 2000
  • 삼차원 입체조형치료는 정상조직의 장해를 최소화하고 종양부위에 집중적으로 조사할 수 있는 장점을 가지고 있어 임상 적용범위가 넓어지고 있다. 일반적으로 정상조직의 장해를 줄이기 위해 다양한 방사선 조사방향이 사용되며 특히 비 동일면상에서의 조사가 많이 이루어진다. 따라서 couch 회전이 동반되며 couch는 선형가속기의 다른 기계적 오차보다 많은 오차를 유발할 수 있는 잠재적인 위험을 안고 있다. 저자는 이러한 오차의 정도를 파악하고 이를 개선할 수 있는 방법에 대해 알아보고자 했다. couch 회전에 따른 Isocenter의 변화를 평가하기 위해 3대(Primus, Simens, USA/CL600c & 2100c, Varian, USA)의 선형가속기를 이용하였으며 이중 1대의 장비에는 couch 회전시 오차를 줄이기 위해 고안된 couch 고정장치를 장착하였다. 환자가 테이블에 부하를 주지 않은 상태에서 회전을 실시하여 Isocenter의 변화를 측정하고 환자가 테이블에 누워있는 상황을 재현하기 위해 human phantom을 위치시킨 후 동일한 회전검사를 실시하여 각각의 오차를 비교 분석하였다. 각 실험은 10회씩 반복 측정하여 평균치를 얻었으며 오차의 분석은 AAPM 권고안인 오차중심의 반경으로 표현했다. 3대의 선형가속기를 이용하여 얻은 결과 테이블에 부하를 주지 않은 상태의 회전오차는 평균 2mm, 3.2mm, 2mm로 측정되었으며 휴먼 phantom을 올려놓고 부하를 준 상태에서의 오차는 평균 2.1mm, 4mm, 2.1 mm이였다. 또한 고정장치를 이용한 상태에서의 평균오차는 1.9mm로 나타났다. 삼차원 입체조형치료 시 couch 회전에 따른 Isocenter 오차는 장비의 종류 및 작업자의 사용방법에 따라 다르게 나타났으며 테이블의 부하가 클수록 많은 오차를 보였다. 또한 couch 고정장치를 부착한 장비에서의 결과치 만이 AAPM에서 권고하는 오차의 한계에(${\le}2mm$) 들어감을 알 수 있었다. 따라서 정기적인 QA가 필수적이며 Couch Locking System과 같이 오차를 줄일 수 있는 보조장치의 부착이 많은 도움을 줄 것으로 생각된다. 아울러 이러한 오차를 보정할 수 있는 방법이 강구되어야 할 것으로 사료된다.

  • PDF

Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy

  • Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.106-110
    • /
    • 2017
  • The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.

Feasibility Study of Mobius3D for Patient-Specific Quality Assurance in the Volumetric Modulated Arc Therapy

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Lee, Jeongshim;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2019
  • Purpose: This study was designed to evaluate the dosimetric performance of Mobius3D by comparison with an aSi-based electronic portal imaging device (EPID) and Octavius 4D, which are conventionally used for patient-specific prescription dose verification. Methods: The study was conducted using nine patients who were treated by volumetric modulated arc therapy. To evaluate the feasibility of Mobius3D for prescription dose verification, we compared the QA results of Mobius3D to an aSi-based EPID and the Octavius 4D dose verification methods. The first was the comparison of the Mobius3D verification phantom dose, and the second was to gamma index analysis. Results: The percentage differences between the calculated point dose and measurements from a PTW31010 ion chamber were 1.6%±1.3%, 2.0%±0.8%, and 1.2%±1.2%, using collapsed cone convolution, an analytical anisotropic algorithm, and the AcurosXB algorithm respectively. The average difference was found to be 1.6%±0.3%. Additionally, in the case of using the PTW31014 ion chamber, the corresponding results were 2.0%±1.4%, 2.4%±2.1%, and 1.6%±2.5%, showing an average agreement within 2.0%±0.3%. Considering all the criteria, the Mobius3D result showed that the percentage dose difference from the EPID was within 0.46%±0.34% on average, and the percentage dose difference from Octavius 4D was within 3.14%±2.85% on average. Conclusions: We conclude that Mobius3D can be used interchangeably with phantom-based dosimetry systems, which are commonly used as patient-specific prescription dose verification tools, especially under the conditions of 3%/3 mm and 95% pass rate.

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF