• Title/Summary/Keyword: Q-sepharose

Search Result 109, Processing Time 0.031 seconds

Purification and Characterization of Recombinant Human Follicle Stimulating Hormone Produced by Chinese Hamster Ovary Cells

  • NA KYU HEUM;KIM SEUNG CHUL;SEO KWANG SEOK;LEE SUNG HEE;KIM WON BAE;LEE KANG CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.395-402
    • /
    • 2005
  • Biologically active recombinant human follicle stimulating hormone (rhFSH) was produced in Chinese hamster ovary cells and purified by a series of chromatographic steps. The chromatographic steps included anion-exchange chromatography (DEAE Sepharose F/F, Q Sepharose F/F), hydrophobic interaction chromatography (Source 15 PHE), and hydroxyapatite chromatography (Macro-Prep ceramic hydroxyapatite type I). A distinctive step of the purification process developed was the use of ZnCl$_2$ for the removal of non-glycosylated or lowly-glycosylated FSH and impurities through co-precipitation with Zn$^{2+}$. Purified rhFSH was identified and characterized by several physicochemical and biological methods such as gel electrophoresis, high-performance liquid chromatography, amino acid analysis, carbohydrate analysis, and biological activity. The overall yield of the purification was ~$30\%$. The rhFSH preparation obtained showed high purity (>$99\%$) and high in vivo potency (>16,000 IU/mg). Carbohydrate analysis suggested that the purified rhFSH contained approximately $40\%$ (w/w) carbohydrate with di­or tri-antennary structure on average, which is somewhat more heavily sialylated than commercially available rhFSH. In conclusion, the results of these analyses established an identity of the purified rhFSH with natural FSH from human pituitary glands, and furthermore, the purified rhFSH preparation showed higher in vivo potency and was slightly more heavily sialylated than commercially available rhFSH.

Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp. -I. Purification of Protease from the Hepatopancreas of Penaeus japonicus-

  • Choi Sung-Mi;Oh Eun-Sil;Kim Doo-Sang;Pyeun Jae-Hyeung;Cho Deuk-Moon;Ahn Chang-Bum;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.201-208
    • /
    • 1998
  • A protease, which had no tryptic and chymotryptic activity, was purified from the hepatopancreas of shrimp, P. japonicus, through ammonium sulfate fractionation, Q­Sepharose ionic exchange, benzamidine Sepharose 6B affinity, and Sephacryl S-100 gel chromatography. Molecular weight (M.W.) of the protease was estimated to be 24 kDa by gel filtration and showed a single peptide band by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The protease had a low ratio of acidic to basic amino acids, which is different with pro teases from marine animals. The enzyme was partially inhibited by benzamidine, tosyl-L-lysine chioromethyl ketone (TLCK), phenylmethylsulfonyl fluoride (PMSF), soybean trypsin inhibitor (SBTI), and pepstatin. The enzyme did not have any activity against benzoyl-D,L-arginine p-nitroanilide (BAPNA) or benzoyl-L-tyrosine ethyl ester (BTEE) which is a specific substrate of trypsin and chymotrypsin, respectively. However, the enzyme showed activity forward N-CBZ-L-tyrosine p-nitrophenyl ester (CBZ-Tyr-pNE), N­CBZ-L-tryptophan p-nitrophenyl ester (CBZ-Trp-pNE), and N-CBZ-L-proline p-nitrophenyl ester (CBZ-Pro-pNE). The protease did not showed tryptic and chymotryptic activity, which was not reported in shrimp hepatopancreas.

  • PDF

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1

  • Zheng, Hongchen;liu, Yihan;Liu, Xiaoguang;Wang, Jianling;Han, Ying;Lu, Fuping
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.930-938
    • /
    • 2012
  • High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.

Analysis of Amino Acid Residues Involved in Activities of Chitin Deacetylase of Aspergillus nidulans (Aspergillus nidulans에서 분리된 키틴 탈아세틸화 효소활성에 영향을 미치는 아미노산 잔기 분석)

  • Kim, Jong-Il;Song, Da-Hyun
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • Native chitin deacetylase of Aspergillus nidulans was purified to apparent homogeneity by a combination of phenyl-Sepharose and Q-Sepharose column chromatography. In order to analyze the amino acid residues involved in the enzyme activity, the enzyme was chemically modified with chemical agent, which selectively reacted with the specific amino acid residue on the protein. When the enzyme was chemically modified with diethylpyrocarbonate, which specifically reacted with histidine residues on the protein, the activity was eliminated. The chitin deacetylase, chemically modified with 100 ${\mu}M$ modifier at the residue of arginine or tyrosine, has shown to have decreased activities. It was shown that the modification at aspartic acid or glutamic acid did not affect the enzyme activity to a greater extent, which would not implicate that acid amino residues were directly involved in catalytic reaction and would affect on the global structures of the proteins. This results demonstrated that histidine and tyrosine residues of enzyme would participate in an important function of the chitin deacetylase activity.

A Novel Plasmid-Mediated ${\beta}-lactamase$ that Hydrolyzes Broad-Spectrum Cephalosporins in a Clinical Isolate of Klebsiella pneumoniae

  • Kwak, Jin-Hwan;Kim, Mu-Yong;Chol, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2001
  • A new extended-spectrum ${\beta}-lactamase$ with an isoelectric point (pl) of 6.2 was detected in Klebsiella pneumoniae Fl 61 that was isolated from a patient with infection. This strain was highly resistant to the third or fourth generation cephalosporins such as cceftazidime ceftriaxone, cefoperzaone, and cefpirome. Analysis of this strain by the double disk diffusion test showed synergies between amoxicillin-clavulanate (AMX-CA) and cefotaxime, and AMX-CA and aztreonam, which suggested that this strain produced a extended-spectrum ${\beta}-lactamase$ (ESBL). Cenetic analysis revealed that the resistance was due to the presence of a 9.4-kb plasmic, designated as pkpl 61, encoding for new ${\beta}-lactamase$ gene (bla). Sequence analysis showed that a new bla gene of pkpl 61 differed from $bla_{TEM-1}$ by three mutations leading to the following amino acid substitutions: $Val_{84}{\rightarrow}lie,{\;}Ala_{184}{\rightarrow}Val,{\;}and{\;}Gly_{238}{\rightarrow}Ser$. These mutations have not been reported previously in the TIM type ${\beta}-lactamases$ produced by clinical strains. The novel ${\beta}-lactamase$ was overexpressed in E. coli and purified by ion exchange chromatography on Q-Sepharose and CM-Sepharose, and then further purified by gel filtration on Sehadex G-200. The catalytic activity of th8 purified ${\beta}-lactamase$ was confirmed by the nitrocefin disk.

  • PDF

Quantitative Real-Time PCR of Porcine Parvovirus as a Model Virus for Cleaning Validation of Chromatography during Manufacture of Plasma Derivatives (혈장분획제제 제조공정에서 크로마토그래피 세척 검증을 위한 모델바이러스로서의 Porcine Parvovirus 정량)

  • Kil Tae Gun;Kim Won Jung;Lee Dong Hyuk;Kang Yong;Sung Hark Mo;Yoo Si Hyung;Park Sue-Nie;Kim In Seop
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.216-224
    • /
    • 2005
  • Chromatography has now been used successfully to provide the requisite purity for human plasma-derived biop-harmaceuticals such as coagulation factors and immunoglobulins. Recently, increasing attention has been focused on establishing efficient cleaning procedures to prevent potential contamination by microorganisms as well as carry-over contamination from batch to batch. The purpose of present study was to develop a cleaning validation system for the assurance of virus removal and/or inactivation during chromatography process. In order to establish an assay system for the validation of virus clearance during chromatography cleaning process, a quantitative real-time PCR method for porcine parvovirus(PPV) was developed, since PPV, a model virus for human parvovirus B19, has a high resistance to a range of physico-chemical treatment. Specific primers for amplification of PPV DNA was selected, and PPV DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1.5 $TCID_{50}/ml$. The established real-time PCR assay was successfully applied to the validation of PPV removal and cleaning during SP-Sepharose cation chromatography for thrombin purification and Q-Sepharose anion chromatography for factor VIII purification. The comparative results obtained by real-time PCR assay and infectivity titrations suggested that the real-time PCR assay could be a useful method for chromatography cleaning validation and that it could have an additive effect on the interpretation and evaluation of virus clearance during the virus removal process.

Characterization of different Dioxygenases isolated from Delftia sp. JK-2 capable of degrading Aromatic Compounds, Aniline, Benzoate, and p-Hydroxybenzoate (방향족 화합물인 Aniline, benzoate, p-Hydroxybenzoate를 분해하는 Delftia sp. JK-2에서 분리된 Dioxygenases의 특성연구)

  • 오계헌;황선영;천재우;강형일
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • The aim of this work was to investigate the purification and characterization dixoygenases isolated from Delftia sp. JK-2, which could utilize aniline, benzoate, and p-hydroxybenoate as sole carbon and energy source. Catechol 1,2-dioxygenase (C1, 2O), catechol 2,3-dioxygenase(C2, 3O), and protocatechuate 4,5-dioxygenase(4,5-PCD) were isolated by benzoate, aniline, and p-hydroxybenzoate. In initial experiments, several characteristics of C1 ,2O, C2, 3O, and 4,5-PCD separated with ammonium sulfate precipitation, DEAE-sepharose, and Q-sepharose were investigated. Specific activity of C1 ,2O, C2, 3O, and 4,5-PCD were approximately 3.3 unit/mg, 4.7 unit/mg, and 2.0 unit/mg. C1 ,2O and C2, 3O demonstrated their enzyme activities to other substrates, catechol and 4-methylcatechol. 4,5-PCD showed the specific activity to the only substrate, protocatechuate, but the substrates(e.g., catechol, 3-methylcatechol, 4-methylcatechol, 4-chlorocatechol, 4-nitrocatechol) did not show any specific activities in this work. The optimum temperature of C1, 2O, C2, 3O, and 4,5-PCD were 30$^{\circ}C$, and the optimal pHs were approximately 8, 8, and 7, respectively. Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/ showed inhibitory effect on the activity of C1, 2O and C2, 3O, but Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/, Fe$\^$3+/ showed inhibitory effect on the activity of 4,5-PCD. Molecular weight of the C1, 2O, C2, 3O, and 4,5-PCD were determined to approximately 60 kDa,35 kDa, and 62 kDa by SDS-PAGE.

The Binding Properties of Glycosylated and Non- Glycosylated Tim-3 Molecules on $CD4^+CD25^+$T Cells

  • Lee, Mi-Jin;Heo, Yoo-Mi;Hong, Seung-Ho;Kim, Kyong-Min;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2009
  • Background: T cell immunoglobulin and mucin domain containing 3 protein (Tim-3) expressed on terminally differentiated Th1 cells plays a suppressive role in Th1-mediated immune responses. Recently, it has been shown that N-glycosylation affects the binding activity of the Tim-3-Ig fusion protein to its ligand, galectin-9, but the binding properties of non-glycosylated Tim-3 on $CD4^+CD25^+$T cells has not been fully examined. In this study, we produced recombinant Tim-3-Ig fusion proteins in different cellular sources and its N-glycosylation mutant forms to evaluate their binding activities to $CD4^+CD25^+$T cells. Methods: We isolated and cloned Tim-3 cDNA from BALB/C mouse splenocytes. Then, we constructed a mammalian expression vector and a prokaryotic expression vector for the Tim-3-Ig fusion protein. Using a site directed mutagenesis method, plasmid vectors for Tim-3-Ig N-glycosylation mutant expression were produced. The recombinant protein was purified by protein A sepharose column chromatography. The binding activity of Tim-3-Ig fusion protein to $CD4^+CD25^+$T cells was analyzed using flow cytometry. Results: We found that the nonglycosylated Tim-3-Ig fusion proteins expressed in bacteria bound to $CD4^+CD25^+$T cells similarly to the glycosylated Tim-3-Ig protein produced in CHO cells. Further, three N-glycosylation mutant forms (N53Q, N100Q, N53/100Q) of Tim-3-Ig showed similar binding activities to those of wild type glycosylated Tim-3-Ig. Conclusion: Our results suggest that N-glycosylation of Tim-3 may not affect its binding activity to ligands expressed on $CD4^+CD25^+$T cells.

Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350 (형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Streptomycetes is a group of Gram-positive soil bacteria that growas a branching vegetative mycelium leading to the formation of spores, and display a physiological differenti-ation related to the synthesis of many secondary metabolites including antibiotics. Their complex life cycle and multicellular differentiation require various levels of regulation and types of signal transduction systems including eukaryotic-type serine/threonine protein kinases and prokaryotic-type histidine/aspartic acid protein kinases. Akt kinase that was found in cells is a sorine/threonine kinase controlling signal pathway for multi-tude of important cellular events. The activation or inactivation of Akt kinase in the cell is one of the critical regulatory points to deliver cell proliferation, differentiation, survival or apoptosis signal. To find the regula-tory protein homologous to Akt in Streptomyces, the fluorescien-labeled synthetic peptide (FITC-TRRSR-TESIT) was designed from the consensus sequence of target proteins for Akt kinase. From the difference of the mobility between the nonphosphorylated and phosphorylated synthetic peptides on Agarose gel electro-phoresis, the Akt-phosphorylating activity was monitored. The cell-free extract prepared from Streptomyces griseus IFO 13350 and the Akt homologous protein was purified by ammonium sulfate fractionation and many steps of column chromatographies such as, DEAE-Sepharose, Mono Q, Resource Phenyl-Soporose and Gel permeation column chromatographies. As a result, the protein phosphorylating the fluorescien-labeled Akt substrate was identified and it's molecular weight was estimated as 39 kDa on SDS-PAGE.

Removal and Inactivation of Viruses during Manufacture of a High Purity Antihemophilic Factor VII Concentration from Human Plasma

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae;Woo, Hang-Sang;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.497-503
    • /
    • 2001
  • The purpose of this study was to examine the efficacy and mechanism of the cryo-precipitation, solvent/detergent (S/D) treatment, monoclonal anti-FVIIIc antibody (mAb) column chromatography, Q-Sepharose column chromatography, and lyophilization involved in the manufacture of antithemophilic factor VII(GreenMono) from human plasma, in the removal and/or inactivation of blood-borne viruses. A variety of experimental model viruses for human pathogenic viruses, including the bovine viral diarrhoea virus (BVDV), bovine herpes virus (BHV), murine encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV), were all selected for this study. BHV and EMCV were effectively partitioned from a factor VII during the cryo-precipitation with a log reduction factor of 2.83 and 3.24, respectively. S/D treatment using the organic solvent, tri(n-butyl) phosphate (TNBP), and the detergent, Triton X-100, was a robust and effective step in inactivating enveloped viruses. The titers of BHV and BVDV were reduced from the initial titer of 8.85 and $7.89{log_10} {TCID_50}$, respectively, reaching undetectable levels within 1 min of the S/D treatment. The mAb chromatography was the most effective step for removing nonenveloped viruses, EMCV and PPV, with the log reduction factors of 4.86 and 3.72, respectively. Q-Sepharose chromatography showed a significant efficacy for partitioning BHV, BVDV, EMCV, and PPV with the log reduction the log reduction factors of 2.32, 2.49, 2.60, and 1.33 respectively. Lyophilization was an effective step in inactivating g nonenveloped viruses rather than enveloped viruses, where the log reduction factors of BHV, BVDV, DMCV, and PPV were 1.41, 1.79, 4.76, and 2.05, respectively. The cumulative log reduction factors of BHV, BVDV, EMCV, and PPV were ${\geqq}$11.12, ${\geqq}$7.88, 15.46, and 7.10, respectively. These results indicate that the production process for GreenMono has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

  • PDF