• Title/Summary/Keyword: Q-compensation

Search Result 151, Processing Time 0.026 seconds

Improvement in Image Rejection of Multi-Port Junction-based Direct Receivers (다중 접합 기반 수신기의 영상 제거비 평가 및 향상 방법)

  • Park, Hyung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.43-48
    • /
    • 2012
  • This paper presents an iterative single-frequency continuous-wave signal-based I/Q regeneration method for improving image-rejection performance of multi-port junction-based direct receivers (MPDRs). This paper analyzes I/Q regeneration in MPDRs as I/Q mismatch compensation for direct conversion receivers. Based on the analysis, this paper evaluates the accuracy of I/Q regeneration in terms of the image-rejection ratio (IRR). The proposed method improves the IRR performance more than 20 dB compared to existing I/Q regeneration methods. Simulation results show that MPDRs using the proposed method can achieve an IRR of more than 70 dB, and that the bit error rate performances are almost the same as those of conventional coherent demodulators, even in fading channels.

Compensation of Time Delay in Induction Motor Vector Control System Using DQ Transformation (유도전동기 벡터제어 시스템에서 DQ변환을 이용한 시간지연 보상)

  • 최병태;권우현;박철우
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1001-1008
    • /
    • 2003
  • A time-delay compensation method for vector control system is proposed that can compensate for voltage and current distortions resulting from a time delay in the overall system due to the low pass filter, hysteresis control inverter, microprocessor program computation time, and so on. The proposed scheme estimates the time delay using the difference between the Q-axis stator current command and the time-delayed actual Q-axis stator current in a synchronous reference frame, then compensates the time delay in the voltage and current using the angular displacement of a DQ transformation. Accordingly, the proposed scheme can accurately compensate for the time delay related to the overall system, thereby significantly improving the performance of the vector control system, as verified by simulation and experiment.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

Optimization of 40 Gb/s WDM Systems Using Super-Gaussian RZ Pulses

  • Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae;Choi, Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2008
  • 40 Gbps WDM Systems using super-Gaussian RZ pulses have been studied by numerical simulation to optimize their performance. The assumption of standard single mode fiber is valid when existing WDM systems are required to upgrade their performance to 40Gbps. It is shown that the standard single mode fiber can transmit optical signals over 720 km (Q > 10) by optimizing optical and electrical filter characteristics at the receiver and by compensation of dispersion. However, it is also shown that ${\pm}0.3%$ dispersion compensation tolerance per span (80 km) could prohibit transmitting over 320km (Q > 10). In addition, a duty cycle of less than 0.4 degrades system performance significantly.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

Distortion Compensation of WDM Signals with initial frequency chirp in the Modified Mid-Span Spectral Inversion Technique

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • In this paper, the optimal value of optical phase conjugator (OPC) position and the optimal values of dispersion coefficients of fiber sections for the best compensation of the distorted WDM signals with frequency chirp of -1 are induced to alternate with the symmetrical distributions of power and local dispersion with respect to OPC, which is difficult to form in real optical link due to fiber attenuation in mid-span spectral inversion (MSSI) technique. It is confirmed that the Q-factors of total channels of -18.5 dBm launching light power exceed 16.9 dB, which value corresponds to 10-12 BER, by applying the induced optimal parameter values into 16 channels ${\times}$ 40 Gbps WDM system, on the other hand the Q-factors of only 9 channels exceed that value in WDM system with the conventional MSSI technique. Thus, it is expected to expand the availability of OPC in WDM system through the using of the optimal parameter values that are induced by the proposed method in this paper, without the symmetrical distributions of power and local dispersion.

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

A Study on the Active Compensation of Operational Amplifier (연산 증폭기의 능동보상에 관한 연구)

  • 김익수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1984
  • The active compensation of operational amplifeir is that it compensates the phase shift and the attennation of gain of OP Amp, according as the frequency increases. The compensation circuit is applied to VCVS and interting integrator. For VCVS, the phase shift of proposed compensated circuit is not concern with the frequency and the gain chracteristic is better than the proposde circuit by Soliman, according as the rate of feedback resistors of compensated circuit changes. Voltage follower accomplishies compgnsation using the same circuit. Also, the compensation circuit to increase O-ffactor in inverting integrator is proposed.

  • PDF

A Study on vector control of induction motor drive using a speed sensorless (속도센서리스 벡터제어에 의한 유도전동기 운전)

  • 이춘상
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.417-420
    • /
    • 2000
  • In order to the torque control the indirect flux control was performed by controlling the ratio of e/f and the q-axis flux was estimated by the slip command and q-axis flux was estimated by the slip command and q-axis current in the rotor circuits. Also the frequency was controlled to keep on the q-axis flux to be zero and the constant torque characteristics could be obtained by generation the preset torque. In the induction motor driven by the boltage source inverter with the constant voltage and frequency the speed variation is expressed as a slip So the speed control can be achieved by slip compensation The slip was calculated with a q-flux current filtered by first-order filter and as the result the error problem which may occur in current detection was eliminated

  • PDF

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.