Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.8
/
pp.1011-1017
/
2019
This paper proposes reinforcement learning to solve the node-disjoint path problem which establishes multipath for reliable data transmission in wireless ad-hoc networks. The node-disjoint path problem is a problem of determining a plurality of paths so that the intermediate nodes do not overlap between the source and the destination. In this paper, we propose an optimization method considering transmission distance in a large-scale wireless ad-hoc network using Q-learning in reinforcement learning, one of machine learning. Especially, in order to solve the node-disjoint path problem in a large-scale wireless ad-hoc network, a large amount of computation is required, but the proposed reinforcement learning efficiently obtains appropriate results by learning the path. The performance of the proposed reinforcement learning is evaluated from the viewpoint of transmission distance to establish two node-disjoint paths. From the evaluation results, it showed better performance in the transmission distance compared with the conventional simulated annealing.
This study analyzed subjective cognitive types of culinary majors by applying TBL of cooking practice subjects, and applied Q methodology to multifaceted analysis of subjective cognitive types of learners. For the analysis of the study, interviews were conducted for college students majoring in cooking, and the survey was conducted in the order of constructing the Q population, selecting P-samples, classifying Q, interpreting the results, conclusions, and discussion. A total of four types were derived from the type analysis, and each was named according to its specificity as follows. Type 1 (N = 8): Cooperative Learning Effect Types, Type 2 (N = 8): Problem Solving Ability Effect Types, Type 3 (N = 6): Self Directed Learning Effect Type, Type 4 (N = 6): Individual Practice Preference Type analyzed for each unique feature type. It is expected that through the results of the study, it is expected to provide important implications that can help in the study of similar teaching methods in the future by fostering talents who can increase the needs of the industry and social stress.
Journal of Korean Tunnelling and Underground Space Association
/
v.22
no.3
/
pp.239-248
/
2020
Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.11
/
pp.4174-4181
/
2010
This paper presents an adaptive scheduling algorithm for manufacturing processes with non-stationary rework probabilities. The adaptive scheduling scheme named by hybrid Q-learning algorithm is proposed in this paper making use of the non-stationary rework probability and coupling with artificial neural networks. The proposed algorithm is measured by mean tardiness and the extensive computational results show that the presented algorithm gives very efficient schedules superior to the existing dispatching algorithms.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.3
/
pp.441-446
/
2010
Each robot decides and behaviors themselves surrounding circumstances in the swarm robot system. Robots have to conduct tasks allowed through cooperation with other robots. Therefore each robot should have the ability to learn and evolve in order to adapt to a changing environment. In this paper, we proposed learning based on Q-learning algorithm and evolutionary using Harmony Search algorithm and are trying to improve the accuracy using Harmony Search Algorithm, not the Genetic Algorithm. We verify that swarm robot has improved the ability to perform the task.
This study analyzed subjectivity of underachievers on Peer Assisted Learning(PAS) in culinary skills related subject for providing better educational environment through consideration of educational efficiency of particular teaching method. Q Methodology was employed for analysing of responses of a small group of the students. The research found that three types of distinctive structures of responses of the students' subjectivity. The first one was Increase learning effectiveness type(Type1, N=8), the second one was Development of lesson materials for passive students(Type2, N=8), and the last one was Practical self-directed learning needs development(Type3, N=6). From the result, PAS was an effective teaching method for underachievers for encouraging participation of study program, helping to rise self-confidence in subject's tasks, and awareness of self directed learning and additional study on subjects matters. The study, however, found that students could consider themselves as an interruption to other students' study progress, and could feel other students' awareness as a burden. At last, forming a class by deeper consideration on the learning levels of each students and providing additional educational contents for encouraging self directed learning are necessary for the better efficiency for the future.
The recently proposed "Potential-based" reinforcement learning (RL) method made it possible to combine multiple learnings and expert advices as supervised knowledge within an RL framework. The effectiveness of the approach has been established by a theoretical convergence guarantee to an optimal policy. In this paper, the potential-based RL method is applied to a dynamic channel assignment (DCA) problem in a cellular networks. It is empirically shown that the potential-based RL assigns channels more efficiently than fixed channel assignment, Maxavail, and Q-learning-based DCA, and it converges to an optimal policy more rapidly than other RL algorithms, SARSA(0) and PRQ-learning.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.723-724
/
2022
지난 코로나 상황 동안 비대면 수업을 진행했고, 학생들은 빠르게 적응했다. 온라인 수업은 학습자가 이해될 때까지 반복 학습이 가능하고, 시간과 공간의 제약 없이 자기 주도적으로 학습할 수 있다는 장점이 있지만, 온라인상이라는 특징 때문에 교수자와 학습자 간 상호작용이 부족하다는 한계점이 존재한다. 하지만 이점은 차후에 비대면 수업의 지속적인 활용 및 확대를 제한하는 요인이 될 수 있다. 본 논문에서는 상호작용을 높일 수 있는 웹 기반 에듀테크 시스템을 제안한다. 온라인 수업의 강의 영상을 세부적인 내용을 나누는 Section을 통해 다른 학생들이 질문했던 Q&A 데이터를 모아서 생성된 Section-FAQ를 열람할 수 있고, 그 Q&A에 반응해서 상호작용이 가능하다. 또한 교수자에게 Q&A를 보낼 때 영상의 Section 정보와 강의시간 정보를 같이 전송하여 강의 영상을 확인하지 않고, 빠른 답변이 가능하도록 설계했다. 본 논문에서 제안하는 온라인 수업의 상호작용 향상을 위한 웹 기반 에듀테크 시스템을 통해 온라인상에서 교수자의 역할을 대신해주고 비대면 수업의 단점을 해소해주면서, 교수자과 학습자 간의 상호작용을 높여 수업의 이해도를 높이고 학습자들의 학업성취를 높일 수 있을 것이다.
Journal of The Korean Association of Information Education
/
v.22
no.2
/
pp.177-193
/
2018
The purpose of this paper is to explore the types of subjectivity on edutainment features of software education implemented in elementary school. Q-method is used to seek individual learners' subjectivity type. Three types of subjectivity are found: implementation type, intellectual-fun type, and relationship type. Implementation type learners show positive attitude toward making their thinking into realization, intellectual-fun type learners show positive attitude toward solving problems that require intellectual activities, and relationship type learners show positive toward other persons' attention and consideration. These results imply software education will be more enhanced with these three types considered for implementing software education in elementary schools. This study is expected to contribute to further following research and practices.
In this paper, we suggest multi colony interaction ant reinforcement learning model. This method is a hybrid of multi colony interaction by elite strategy and reinforcement teaming applying Temporal Difference(TD) learning to Ant-Q loaming. Proposed model is consisted of some independent AS colonies, and interaction achieves search according to elite strategy(Intensification, Diversification strategy) between the colonies. Intensification strategy enables to select of good path to use heuristic information of other agent colony. This makes to select the high frequency of the visit of a edge by agents through positive interaction of between the colonies. Diversification strategy makes to escape selection of the high frequency of the visit of a edge by agents achieve negative interaction by search information of other agent colony. Through this strategies, we could know that proposed reinforcement loaming method converges faster to optimal solution than original ACS and Ant-Q.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.