As the knowledge society matures, not only distant, but also off-line universities are trying to provide learners with on-line educational contents. Particularly, high effectiveness of mobile devices for e-Learning has been demonstrated by the university sector, which uses distant learning that is based on blended learning. In this paper, we analyzed previous m-Learning scenarios and future technology prospects. Based on the proposed m-Learning scenario, we designed cellular phone-based educational contents and service structure, implemented m-Learning system, and analyzed m-Learning service satisfaction. The design principles of the m-Learning service are 1) to provide learners with m-Learning environment with both cellular phones and desktop computers; 2) to serve announcements, discussion boards, Q&A boards, course materials, and exercises on cellular phones and desktop computers; and 3) to serve learning activities like the reviewing of full lectures, discussions, and writing term papers using desktop computers and cellular phones. The m-Learning service was developed on a cellular phone that supports H.264 codex in 3G communication technology. Some of the functions of the m-Learning design principles are implemented in a 3G cellular phone. The contents of lectures are provided in the forms of video, text, audio, and video with text. One-way educational contents are complemented by exercises (quizzes).
In this paper, we propose an agent architecture called L-CAA that is quite effective in real-time dynamic environments. L-CAA is an extension of CAA, the behavior-based agent architecture which was also developed by our research group. In order to improve adaptability to the changing environment, it is extended by adding reinforcement learning capability. To obtain stable performance, however, behavior selection and execution in the L-CAA architecture do not entirely rely on learning. In L-CAA, learning is utilized merely as a complimentary means for behavior selection and execution. Behavior selection mechanism in this architecture consists of two phases. In the first phase, the behaviors are extracted from the behavior library by checking the user-defined applicable conditions and utility of each behavior. If multiple behaviors are extracted in the first phase, the single behavior is selected to execute in the help of reinforcement learning in the second phase. That is, the behavior with the highest expected reward is selected by comparing Q values of individual behaviors updated through reinforcement learning. L-CAA can monitor the maintainable conditions of the executing behavior and stop immediately the behavior when some of the conditions fail due to dynamic change of the environment. Additionally, L-CAA can suspend and then resume the current behavior whenever it encounters a higher utility behavior. In order to analyze effectiveness of the L-CAA architecture, we implement an L-CAA-enabled agent autonomously playing in an Unreal Tournament game that is a well-known dynamic virtual environment, and then conduct several experiments using it.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.35-36
/
2023
본 논문에서는 OpenAI Gym 환경에서 제공하는 Acrobot-v1에 대해 DQN(Deep Q-Networks) 강화학습으로 학습시키고, 이 때 적용되는 활성화함수의 성능을 비교분석하였다. DQN 강화학습에 적용한 활성화함수는 ReLU, ReakyReLU, ELU, SELU 그리고 softplus 함수이다. 실험 결과 평균적으로 Leaky_ReLU 활성화함수를 적용했을 때의 보상 값이 높았고, 최대 보상 값은 SELU 활성화 함수를 적용할 때로 나타났다.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.361-365
/
2002
오랜 세월동안 위대한 이동수단을 만들어내고자 하는 인간의 꿈은 오늘날 눈부신 각종 운송기구를 만들어 내는 결실을 얻고 있다. 자동차 네비게이션 시스템도 그러한 결실중의 한 예라고 할 수 있을 것이다. 지능적으로 판단하고 정보를 처리할 수 있는 자동차 네비게이션 시스템을 부착함으로써 한 단계 발전한 운송수단으로 진화할 수 있을 것이다. 이러한 자동차 네비게이션 시스템의 단점이라면 한정된 리소스만으로 여러 가지 작업을 수행해야만 하는 어려움이다. 그래서 네비게이션 시스템의 주요 작업중의 하나인 경로를 추출하는 경로추출(Route Planning) 작업은 한정된 리소스에서도 최적의 경로를 찾을 수 있는 지능적인 방법이어야만 한다. 이러한 경로를 추출하는 작업을 하는데 기존에 일반적으로 쓰였던 두 가지 방법에는 Dijkstra s algorithm과 A*algorithm이 있다. 이 두 방법은 최적의 경로를 찾아낸다는 점은 있지만 경로를 찾기 위해서 알고리즘의 특성상 각각, 넓은 영역에 대하여 탐색작업을 해야 하고 또한 수행시간이 많이 걸린다는 단점과 또한 경로를 계산하기 위해서 Heuristic function을 추가적인 정보로 계산을 해야 한다는 단점이 있다. 본 논문에서는 적은 탐색 영역을 가지면서 또한 최적의 경로를 추출하는데 드는 수행시간은 작으며 나아가 동적인 교통환경에서도 최적의 경로를 추출할 수 있는 최적 경로 추출방법을 강화학습의 일종인 Q- Learning을 이용하여 구현해 보고자 한다.
The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.538-540
/
2021
In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.
Min-Kyu Kim;Jong-Hwa Kim;Ik-Soon Choi;Hyeong-Tak Lee;Hyun Yang
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.167-168
/
2022
선박을 운항함에 있어 최적항로를 결정하는 것은 항해시간과 연료 소모를 줄이는 중요한 요인 중의 하나이다. 기존에는 항로를 결정하기 위해 항해사의 전문적인 지식이 요구되지만 이러한 방법은 최적의 항로라고 판단하기 어렵다. 따라서 연료비 절감과 선박의 안전을 고려한 최적의 항로를 생성할 필요가 있다. 연료 소모량 혹은 항해시간을 최소화하기 위해서 에이스타 알고리즘, Dijkstra 알고리즘을 적용한 연구가 있다. 하지만 이러한 연구들은 최단거리만 구할 뿐 선박의 안전, 해상상태 등을 고려하지 못한다. 이를 보완하기 위해 본 연구에서는 강화학습 알고리즘을 적용하고자한다. 강화학습 알고리즘은 앞으로 누적 될 보상을 최대화 하는 행동으로 정책을 찾는 방법으로, 본 연구에서는 강화학습 알고리즘의 하나인 Q-learning을 사용하여 선박의 안전을 고려한 최적의 항로를 생성하는 기법을 제안 하고자 한다.
The purpose of this study was to find out the subjective cognition-patterns of school aged children with borderline intelligence function to the School using Q Methodology. Q-sample was included 21 statements obtained from literatures and in-depth interviews with 4 specialist & 4 children with borderline intelligence function. P-sample was consisted through the consent of 18 children with borderline intelligence function and their parents. The 21 selected Q-statements were classified into a normal distribution using a 5 point scale. The collected data analyzed using a Quanl PC program. This study found out two subjective cognition-patterns of school aged children with borderline intelligence function to the school. Two types were 'participatory & dependent type', and 'onlooking & atrophic type'. This research finding can be used to make clear understanding on diverse voices of school aged children with borderline intelligence function to the School. And this result will attribute to mediations of educational welfare practice for maintaining a safe & healthy learning environment.
Purpose: This research was done to provide fundamental data to improve learning methods in Pediatric nursing and meet the needs of the students in actual nursing by analyzing nurse student experiences with problem-based learning in Pediatric nursing. Method: Using the 31 Q-samples selected, 20 nursing students from J college were selected as p-samples. The students were personally interviewed in January or February 2008. Result: The result of the study showed 3 types. The first type was the "negative resister", who failed to adapt to the problem-based learning and resists negatively. The second type was the "active receiver", who participated in the process of the problem-based learning and received it actively. The third type was the "passive accepters", who accepted problem-based learning but worried because they were familiar only with traditional learning. Conclusions: In this study, problem-based learning was used for classes in the science of pediatric nursing. The findings indicate that preparation for learning and details should be considered when developing and using modules for pediatric nursing. Further study on the development of problem-based learning modules is also indicated.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.12
/
pp.437-444
/
2022
Recently, research on mobile edge services has been conducted to handle computationally intensive and latency-sensitive tasks occurring in wireless networks. However, MEC, which is fixed on the ground, cannot flexibly cope with situations where task processing requests increase sharply, such as commuting time. To solve this problem, a technology that provides edge services using UAVs (Unmanned Aerial Vehicles) has emerged. Unlike ground MEC servers, UAVs have limited battery capacity, so it is necessary to optimize energy efficiency through load balancing between UAV MEC servers. Therefore, in this paper, we propose a load balancing technique with consideration of the energy state of UAVs and the mobility of vehicles. The proposed technique is composed of task offloading scheme using genetic algorithm and task migration scheme using Q-learning. To evaluate the performance of the proposed technique, experiments were conducted with varying mobility speed and number of vehicles, and performance was analyzed in terms of load variance, energy consumption, communication overhead, and delay constraint satisfaction rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.