• 제목/요약/키워드: Q$_p^{-1}$

검색결과 2,474건 처리시간 0.03초

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

REPRESENTATION OF $L^1$-VALUED CONTROLLER ON BESOV SPACES

  • Jeong, Jin-Mun;Kim, Dong-Hwa
    • East Asian mathematical journal
    • /
    • 제19권1호
    • /
    • pp.133-150
    • /
    • 2003
  • This paper will show that the relation (1.1) $$L^1({\Omega}){\subset}C_0(\bar{\Omega}){\subset}H_{p,q}$$ if 1/p'-1/n(1-2/q')<0 where p'=p/(p-1) and q'=q/(q-1) where $H_{p.q}=(W^{1,p}_0,W^{-1,p})_{1/q,q}$. We also intend to investigate the control problems for the retarded systems with $L^1(\Omega)$-valued controller in $H_{p,q}$.

  • PDF

MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE

  • Li, Songxiao;Lou, Zengjian;Shen, Conghui
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.429-441
    • /
    • 2020
  • Let M(X, Y) denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlet-type spaces 𝓓αp, M(𝓓p-1p, 𝓓q-1q) = {0}, if p ≠ q, 0 < p, q < ∞. If 0 < p, q < ∞, p ≠ q, 0 < s < 1 such that p + s, q + s > 1, then M(𝓓p-2+sp, 𝓓q-2+sq) = {0}. However, X ∩ 𝓓p-1p ⊆ X ∩ 𝓓q-1q and X ∩ 𝓓p-2+sp ⊆ X ∩ 𝓓q-2+sp whenever X is a subspace of the Bloch space 𝓑 and 0 < p ≤ q < ∞. This says that the set of multipliers M(X ∩ 𝓓 p-2+sp, X∩𝓓q-2+sq) is nontrivial. In this paper, we study the multipliers M(X ∩ 𝓓p-2+sp, X ∩ 𝓓q-2+sq) for distinct classical subspaces X of the Bloch space 𝓑, where X = 𝓑, BMOA or 𝓗.

TWO DIMENSIONAL ARRAYS FOR ALEXANDER POLYNOMIALS OF TORUS KNOTS

  • Song, Hyun-Jong
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.193-200
    • /
    • 2017
  • Given a pair p, q of relative prime positive integers, we have uniquely determined positive integers x, y, u and v such that vx-uy = 1, p = x + y and q = u + v. Using this property, we show that$${\sum\limits_{1{\leq}i{\leq}x,1{\leq}j{\leq}v}}\;{t^{(i-1)q+(j-1)p}\;-\;{\sum\limits_{1{\leq}k{\leq}y,1{\leq}l{\leq}u}}\;t^{1+(k-1)q+(l-1)p}$$ is the Alexander polynomial ${\Delta}_{p,q}(t)$ of a torus knot t(p, q). Hence the number $N_{p,q}$ of non-zero terms of ${\Delta}_{p,q}(t)$ is equal to vx + uy = 2vx - 1. Owing to well known results in knot Floer homology theory, our expanding formula of the Alexander polynomial of a torus knot provides a method of algorithmically determining the total rank of its knot Floer homology or equivalently the complexity of its (1,1)-diagram. In particular we prove (see Corollary 2.8); Let q be a positive integer> 1 and let k be a positive integer. Then we have $$\begin{array}{rccl}(1)&N_{kq}+1,q&=&2k(q-1)+1\\(2)&N_{kq}+q-1,q&=&2(k+1)(q-1)-1\\(3)&N_{kq}+2,q&=&{\frac{1}{2}}k(q^2-1)+q\\(4)&N_{kq}+q-2,q&=&{\frac{1}{2}}(k+1)(q^2-1)-q\end{array}$$ where we further assume q is odd in formula (3) and (4). Consequently we confirm that the complexities of (1,1)-diagrams of torus knots of type t(kq + 2, q) and t(kq + q - 2, q) in [5] agree with $N_{kq+2,q}$ and $N_{kq+q-2,q}$ respectively.

ON SOME GROWTH ANALYSIS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS FROM THE VIEW POINT OF THEIR RELATIVE (p, q)-TH TYPE AND RELATIVE (p, q)-TH WEAK TYPE

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.23-41
    • /
    • 2018
  • The main aim of this paper is to prove some results related to the growth rates of composite entire and meromorphic functions on the basis of their relative (p, q)-th order, relative (p, q)-th lower order, relative (p, q)-th type and relative (p, q)-th weak type where p and q are any two positive integers.

THE GROWTH OF ENTIRE FUNCTION IN THE FORM OF VECTOR VALUED DIRICHLET SERIES IN TERMS OF (p, q)-TH RELATIVE RITT ORDER AND (p, q)-TH RELATIVE RITT TYPE

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.93-117
    • /
    • 2019
  • In this paper we wish to study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of (p, q)-th relative Ritt order, (p, q)-th relative Ritt type and (p, q)-th relative Ritt weak type where p and q are integers such that $p{\geq}0$ and $q{\geq}0$.

MEASURES OF COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH TYPE AND RELATIVE (p, q)-TH WEAK TYPE

  • Biswas, Tanmay
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권1호
    • /
    • pp.13-33
    • /
    • 2019
  • The main aim of this paper is to establish some comparative growth properties of composite entire functions on the basis of their relative (p, q)-th order, relative (p, q)-th lower order, relative (p, q)-th type, relative (p, q)-th weak type of entire function with respect to another entire function where p and q are any two positive integers.

ORDER, TYPE AND ZEROS OF ANALYTIC AND MEROMORPHIC FUNCTIONS OF [p, q] - ϕ ORDER IN THE UNIT DISC

  • Pulak Sahoo;Nityagopal Biswas
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.229-242
    • /
    • 2023
  • In this paper, we investigate the [p, q] - φ order and [p, q] - φ type of f1 + f1, ${\frac{f_1}{f_2}}$ and f1 f1, where f1 and f1 are analytic or meromorphic functions with the same [p, q]-φ order and different [p, q]-φ type in the unit disc. Also, we study the [p, q]-φ order and [p, q]-φ type of different f and its derivative. At the end, we investigate the relationship between two different [p, q] - φ convergence exponents of f. We extend some earlier precedent well known results.

LABELLING OF SOME PLANAR GRAPHS WITH A CONDITION AT DISTANCE TWO

  • Zhang, Sumei;Ma, Qiaoling
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.421-426
    • /
    • 2007
  • The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale's channel assignment problem, which was first explored by Griggs and Yeh. For positive integer $p{\geq}q$, the ${\lambda}_{p,q}$-number of graph G, denoted ${\lambda}(G;p,q)$, is the smallest span among all integer labellings of V(G) such that vertices at distance two receive labels which differ by at least q and adjacent vertices receive labels which differ by at least p. Van den Heuvel and McGuinness have proved that ${\lambda}(G;p,q){\leq}(4q-2){\Delta}+10p+38q-24$ for any planar graph G with maximum degree ${\Delta}$. In this paper, we studied the upper bound of ${\lambda}_{p,q}$-number of some planar graphs. It is proved that ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+2(2p-1)$ if G is an outerplanar graph and ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+6p-4q-1$ if G is a Halin graph.

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.