• Title/Summary/Keyword: Pythium species

Search Result 50, Processing Time 0.029 seconds

Antifungal Activity of Lichen-Forming Fungi Isolated from Korean and Chinese Lichen Species Against Plant Pathogenic Fungi

  • Oh, Soon-Ok;Jeon, Hae-Sook;Lim, Kwang-Mi;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2006
  • Antifungal activity of Korean and Chinese lichen-forming fungi(LFF) was evaluated against plant pathogenic fungi of Botryosphaeria dothidea, Botrytis cinerea, Diaporthe actinidiae, Pestalotiopsis longiseta, Pythium sp., Rhizoctonia solani, and Sclerotium cepivorum. The LFF were isolated from Cladonia scabriuscula, Melanelia sp., Nephromopsis asahinae, Nephromopsis pallescens, Parmelia laevior, Pertusaria sp., Ramalina conduplicans, Ramalina sinensis, Ramalina sp., Umbilicaria proboscidea and Vulpicida sp. with discharged spore method. The isolates were deposited in the herbarium of Korean Lichen Research Institute(KoLRI) in Sunchon National University. The LFF of Melanelia sp., P. laevior, Pertusaria sp., R. conduplican and Ramalina sp. exhibited strong antifungal activity against all of the pathogenic fungi examined. Among them, LFF of P. laevior showed more than 90% of inhibition in fungal hyphae growth, compared with control. The results imply that LFF can be served as a promising bioresource to develop novel biofungicides. Mass cultivation of the LFF is now under progress in laboratory conditions for chemical identification of antifungal substances.

Molecular Differentiation of Bacillus spp. Antagonistic Against Phytopathogenic Fungi Causing Damping-off Disease

  • Cho, Min-Jeong;Kim, Young-Kwon;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.599-606
    • /
    • 2004
  • Gram-positive antagonistic bacilli were isolated from agricultural soils for possible use in biocontrol of plant pathogenic fungi, Fusarium oxysporum, Rhizoctonia solani, and/or Pythium ultimum. Among the 65 antagonistic Gram-positive soil isolates, 22 strains were identified as Bacillus species by 16S rDNA sequence analyses. Four strains, including DF14, especially exhibited multiple antagonistic properties against the three damping-off fungi. Genotypic properties of the Bacillus isolates were characterized by rapid molecular fingerprinting methods using repetitive extragenic palindromic-PCR (REP-PCR), ribosomal intergenic spacer-length polymorphisms (RIS-LP), 16S rDNA PCR-restriction fragment length polymorphisms (PCR-RFLP), and strain-specific PCR assays. The results indicated that the REP-PCR method was more valuable than the RIS-LP and 16S rDNA PCR-RFLP analyses as a rapid and reliable approach for bacilli typing and identification. The use of strain-specific primers designed based on 16S rDNA sequence comparisons enabled it to be possible to selectively detect a strain, DF14, which is being used as a biocontrol agent against damping-off fungi.

Detection of Genus Phytophthora and Phytophthora cryptogea-P. drechsleri Complex Group Using Polymerase Chain Reaction with Specific Primers

  • Hong, Seung-Beom;Park, In-Cheol;Go, Seung-Joo;Ryu, Jin-Chang
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.287-294
    • /
    • 1999
  • A technique based on the polymerase chain reaction (PCR) for the specific detection of genus Phytophthora and Phytophthora cryptogea-P. drechsleri complex group was developed using nucleotide sequence information of ribosomal DNA (rDNA) regions. The internal transcribed spacers (ITS) including 5.8S were sequenced for P. cryptogea-P. drechsleri complex group and its related species. Two pairs of oligonucleotide primers were designed. Primer pair ITS1/Phy amplified ca. 240 bp fragment in 12 out of 13 specie of Phytophthora, but not in Pythium spp., Fusarium spp.and Rhizoctonia solani. Primer pair rPhy/Pcd amplified 549 bp fragment only in P. cryptogea-P. drechsleri complex group, but not in other Phytophthora spp.and other genera. Specific PCR amplification using the primers was successful in detecting Phytophthora and P. cryptogea-P. drechsleri complex group in diseased plants.

  • PDF

Oomycete pathogens, red algal defense mechanisms and control measures

  • Xianying Wen;Giuseppe C. Zuccarello;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2023
  • Oomycete pathogens are one of the most serious threats to the rapidly growing global algae aquaculture industry but research into how they spread and how algae respond to infection is unresolved, let alone a proper classification of the pathogens. Even the taxonomy of the genera Pythium and Olpidiopsis, which contain the most economically damaging pathogens in red algal aquaculture, and are among the best studied, needs urgent clarification, as existing morphological classifications and molecular evidence are often inconsistent. Recent studies have reported a number of genes involved in defense responses against oomycete pathogens in red algae, including pattern-triggered immunity and effector-triggered immunity. Accumulating evidence also suggests that calcium-mediated reactive oxygen species signaling plays an important role in the response of red algae to oomycete pathogens. Current management strategies to control oomycete pathogens in aquaculture are based on the high resistance of red algae to abiotic stress, these have environmental consequences and are not fully effective. Here, we compile a revised list of oomycete pathogens known to infect marine red algae and outline the current taxonomic situation. We also review recent research on the molecular and cellular responses of red algae to oomycete infection that has only recently begun, and outline the methods currently used to control disease in the field.

Development of Repetitive DNA Probes for Genetic Analysis of Phytophthora capsici (Phytophthora capsici의 유전적 특성 분석을 위한 Repetitive DNA Probe의 개발)

  • Song, Jeong-Young;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 2002
  • To develop DNA markers for analysis of genetic characteristics of Phytophthora capsici population, randomly selected clones from HindIII-digested genomic DNA library of P. capsici 95CY3119 were surveyed by hybridizing to Southern blots of HindIII-digested total genomic DNA of P. capsici. Probe DNAs inserted into selected individual clones strongly hybridized with HindIII digests of P. capsici. Among probes examined, PC9 revealed the repetitive and highly polymorphic bands to HindIII digests of inter-and intra-field P. capsici isolates. Genetic diversity of individual isolates was also clearly revealed in cluster analysis based on its band patterns. The other probe, PC22, was hybridized only to DNA from P. capsici and this was highly repetitive. However, there was no response to other Phytophthora species and Pythium sp. These DNA probes could be used as very useful markers in analysing genetic diversity and identification for P. capsici population throughout the world.

Purification of a New Elicitin from Phytopthora cambivora KACC40160 (Phytophthora cambivora KACC 40160으로부터 새로운 elicitin의 분리)

  • Yoon, Sang-Hong;Bae, Shin-Chul;Park, In-Cheol;Koo, Bon-Sung;Kim, Young-Hwan;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • Elicitins, proteinaceous elicitors secreted from Oomycetes fungi (Phytophthora spp. and Pythium spp.), have been known as inducer of hypersensitive response (HR) in incompatible interactions between plant and pathogens. Five elicitins among many Korean Phytophthora species caused the reactions of distal HR in radish, chinese cabbage and some hot pepper cultivars, but not in cucumber and tomato. Because the isolation of elicitin from Phytophthora cambivora hasn't been reported yet, we have purified a cambivorein, a new member of the elicitin family, from the culture filtrate of Phytophtilora cambivora (KACC 40160) by using FPLC (Fast Protein Liquid Chromatography, AKTA) with sepharose S and Sephacryl HR columns. We confirmed that it induces necrosis activities in some hot pepper cultivars and its molecular weight is about 10 KDa by Tricine-SDS-PAGE. Comparison of amino acid sequences of its N-terminal ends also informed the identification of Iysine at the 13th position, which is characteristic of a kind of basic elicitin isoform $({\beta}-isoform)$. It Also showed that our elicitin is not identical with N-terminal sequences of many elicitins reported from Phytophthora spp..

Antifungal Activity on the Water Extracts of Five Fagaceae Plants (참나무과 수목 5종 수용성 추출물의 항균활성)

  • Moon, Sang-Ho;Song, Chang-Khil;Kim, Tae-Keun;Oh, Dong-Eun;Kim, Hyoun-Chol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.295-310
    • /
    • 2017
  • This study investigated the growth of five phytopathogenic fungi including Colletotrichum gloeosporioides, Diaporthe citri, Phytophthora capsici and others according to different concentrations of water extract in order to provide reference data for developing environment-friendly agricultural materials using five native Fagaceae species including Quercus acuta, Quercus salicina, Quercus glauca, Quercus gilva and Castanopsis cuspidata var. sieboldii. As the concentration of aqueous extracts of Fagaceae increased according to donor plants, the mycelial growth of phytopathogens showed a decreasing tendency. Differences were found in the degree of inhibition according to types of donor plants and pathogenic fungi. Diaporthe citri, Phytophthora capsici, Pythium graminicola on the water extract of Castanopsis cuspidata var. sieboldii inhibited mycelial growth by 84% in 25% of the treatment group and by 87% in more than half of the treatment group. The water extract of Quercus acuta was found to have no inhibitory effect against the mycelial growth of Diaporthe citri. The aqueous extracts of Quercus salicina, Quercus glauca and Quercus gilva insignificantly inhibited mycelial growth by approximately 15%. The total phenolic content of receptor plants exhibiting antifungal activity was highest in Castanopsis cuspidata var. sieboldii with a content of 22.32 mg/g phenols, followed by Quercus salicina with 8.32 mg/g, Quercus glauca with 6.83 mg/g, Quercus gilva with 5.95 mg/g, and Quercus acuta with 5.24 mg/g. The aqueous extracts of Castanopsis cuspidata var. sieboldii among the five Five Fagaceae Plants of were the most effective antifungal activity.

Isolation and characterization of an antifungal substance from Burkholderia cepacia, an endophytic bacteria obtained from roots of cucumber.

  • Park, J.H.;Park, G.J.;Lee, S.W;Jang, K.S.;Park, Y.H.;Chung, Y.R.;Cho, K.Y.;Kim, J.C.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.2-96
    • /
    • 2003
  • In order to develop a new microbial fungicide for the control of vegetable diseases using endophytic bacteria, a total of 260 bacterial strains were isolated from fresh tissues of 5 plant species. After they were cultured in broth media, their antifungal activities were screened by in vivo bioassays against Botrytis cinerea(tomato gray mold), Pythium ultimum(cucumber damping-off), Phytopkhora infestans(tomato late blight), Colletotrichum orbiculare(cucumber anthracnose), and Blumeria graminis f. sp. hordei(barley powdery mildew). As the results of screening, 38 bacterial strains showed potent antifungal activities against at least one of 5 plant pathogens. A bacterial strain EB072 displayed potent disease control activities against 3 plant diseases. Among the bacterial strains with a potent antifungal activity against cucunlber anthracnose, three bacterial strains, EB054, EB151 and EB215, also displayed a potent in vitro antifungal activity against C. acutatum, a fungal agent causing pepper anthracnose. A bacterial strain EB215 obtained from roots of cucumber was identified as Burkholderia cepacia based on its physiological and biochemical characteristics and 165 rRNA gene sequence. An antifungal substance was isolated from the liquid cultures of B. cepacia EB215 strain by ethyl acetate partitioning, repeated silica gel column chromatography, and invitro bioassay, Its structural determination is in progress by various instrumental analyses.

  • PDF

Identification of Major Fungi and Bacterial Species in Solid Medium Drainage for Circulating Hydroponics System (수경재배 배액 재이용을 위한 주요 곰팡이 및 박테리아 종 파악)

  • Lee, Donggwan;Son, Jinkwan;Kang, Taegyeong;Jang, Jaekyung;Park, Minjung;Lee, Taeseok;Lim, Ryugap
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1109-1123
    • /
    • 2020
  • In this study, the amount of harmful fungi and bacteria contained in the drainage and culture medium from the paprika hydroponic facility is identified. In addition, by proposing the necessity of effective purification of discharged drainage, this study attempted to confirm the possibility of drainage reuse. Finally, this study provides basic data on the basis for calculating the need for purification facilities in the future, as well as improvements in horticulture facility for sustainable agriculture. As a result of the analysis, a total of 12 types of fungi were detected in paprika medium and 10 types of fungi were detected in the drainage, and their densities were 130 and 68, respectively. Among the fungi detected in the media and drainage of the paprika hydroponic facility, the fungi with the highest detection frequency are Fusarium, Phytophthora, and Pythium. In the case of bacteria, a total of 2 types of bacteria were detected in the paprika facilities, and the density was 28 and 23, respectively. Therefore, in order to reuse the drainage and settle the circulating hydroponic cultivation system, a water treatment process capable of appropriate treatment is required.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF